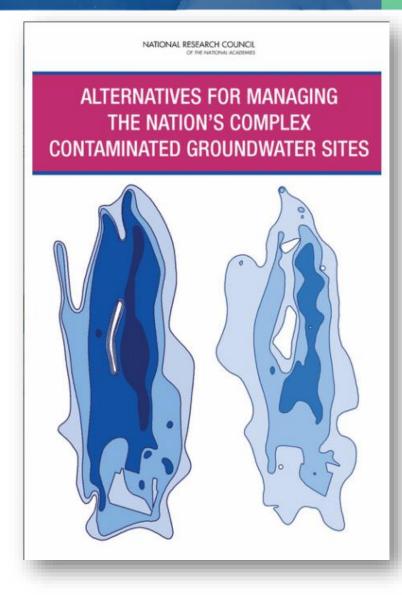
REMISSION CONTAMINANTS

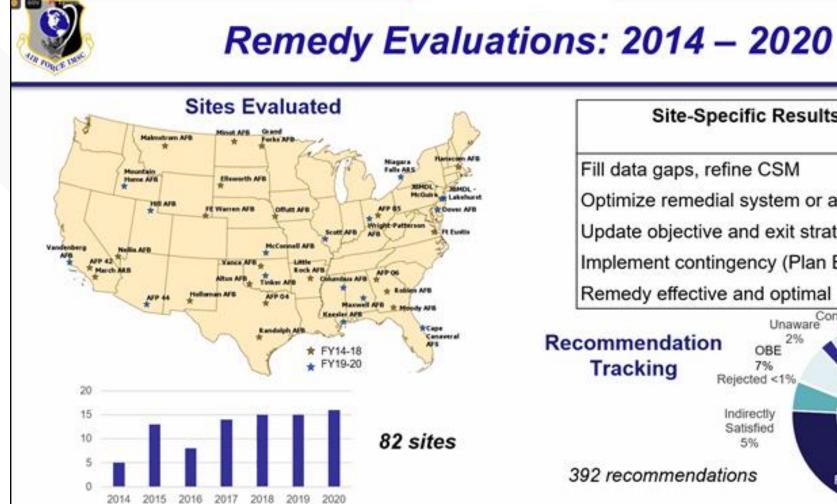
OCTOBER 15-17, 2024

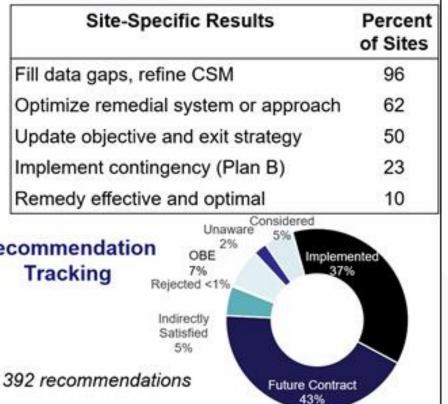
Groundwater Geology: State of the Practice in the *Environmental Industry and in Groundwater Production Projects*

Rick Cramer 10/17/2024



Why Geology Matters


- More than 126,000 sites across the U.S. require remediation
- More than 12,000 of these sites are considered "complex"
- "...due to inherent geologic complexities, restoration within the next 50-100 years is likely not achievable."


Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites National Academy of Sciences Committee on Future Options for Management in the Nation's Subsurface Remediation Effort, 2013

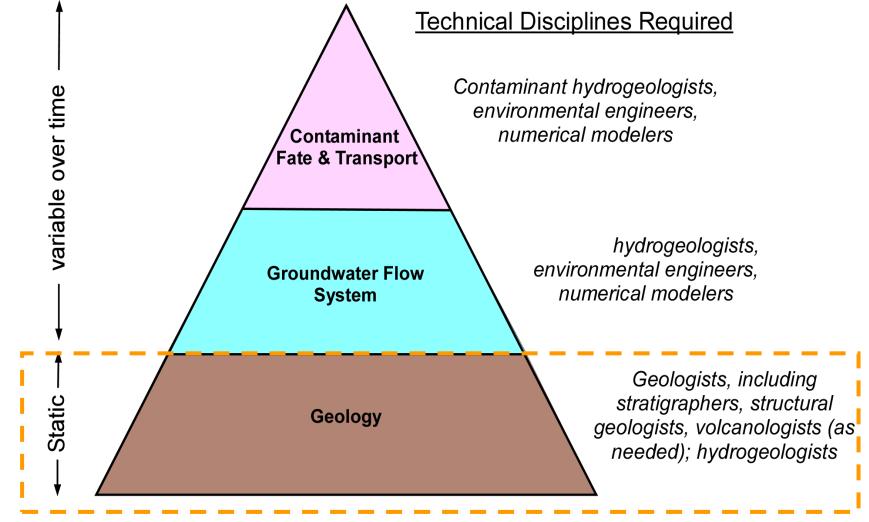
US Air Force Critical Process Analysis (CPA) Project Review

Primary Finding was Improved CSM = Remediation Optimization

Benefits of Geology-Focused Approach

Address the greatest uncertainty, the subsurface

- <u>Start with using existing data...investment has already</u> been made by the client!
- Defines subsurface "plumbing": Identify groundwater flow paths and preferential contaminant migration pathways
- Optimize data gap programs, groundwater monitoring programs, and remediation design

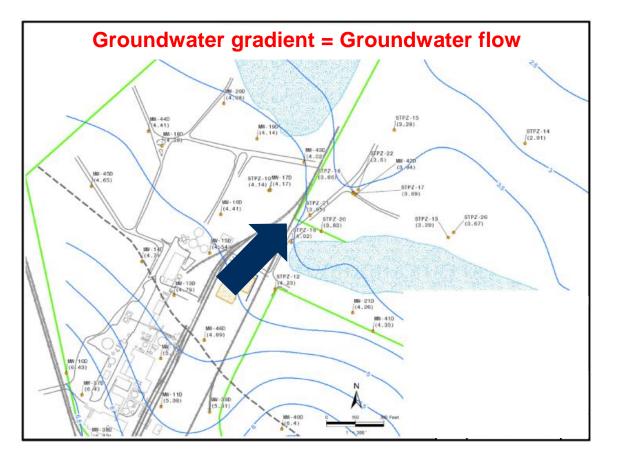

Key Point

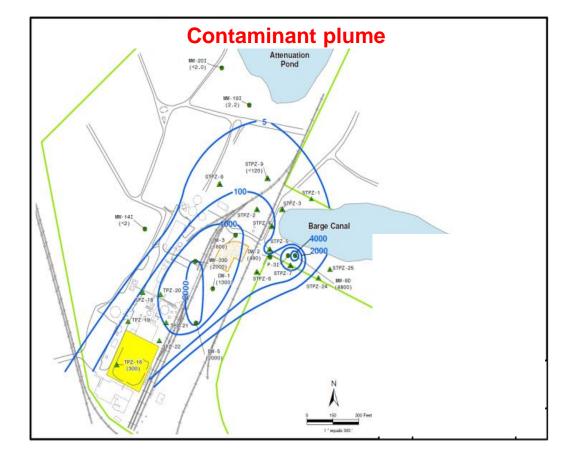
Focus your site strategy to save significant time and money

Paradigm Shift Remediation Geology

ESS is a Geology-Focused Conceptual Site Model

Groundwater Production Industry Traditional Approach to the Subsurface


Groundwater supply studies based on assumptions of homogeneous and isotropic conditions, steady-state observations



Traditional Focus on Hydrology

State of the practice is to apply Darcy's law,

assume homogeneous and isotropic conditions within layers of interest

Traditional Focus on Engineering

Unified Soil Classification System (USCS): Standard Practice for Classifying Soils (Chart from ASTM)

D 2487 – 06

GROUP SYMBOL

GROUP NAME

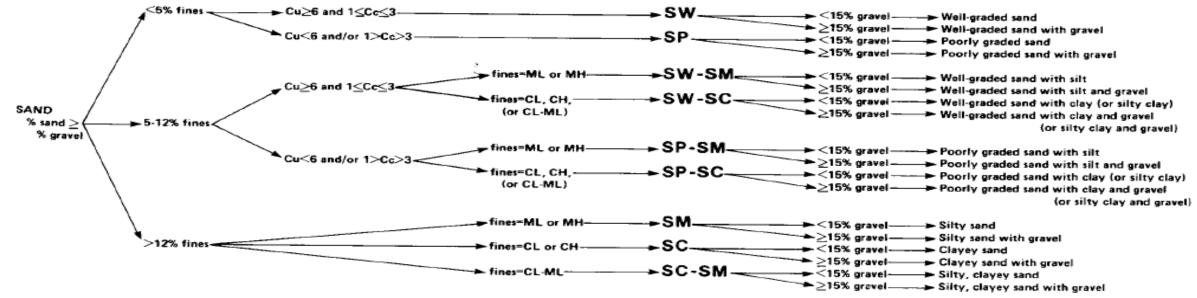
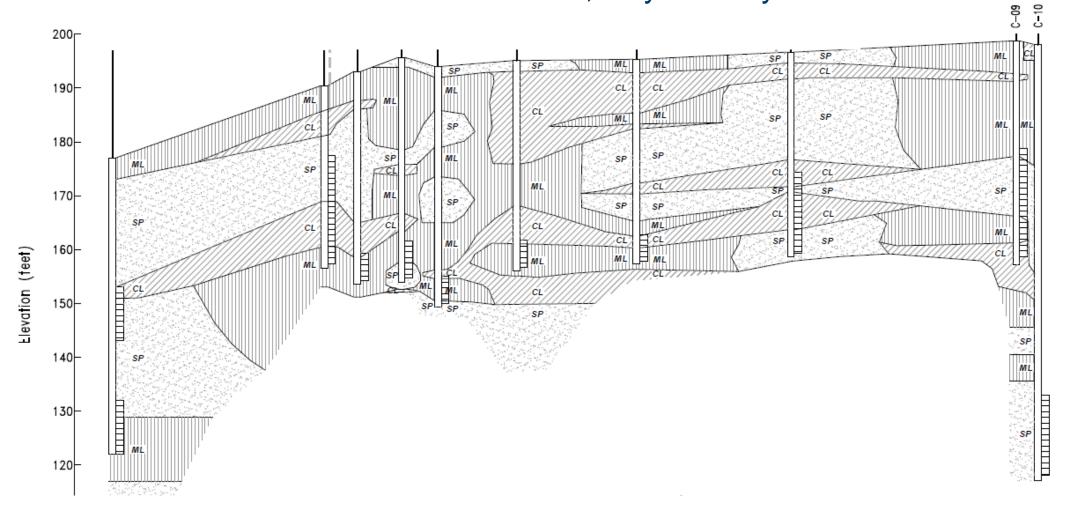
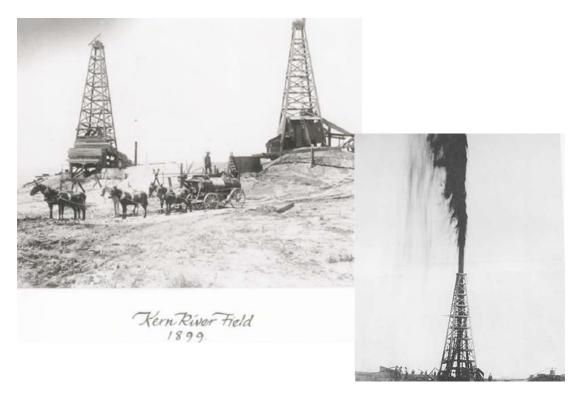



FIG. 3 Flow Chart for Classifying Coarse-Grained Solis (More Than 50 % Retained on No. 200 Sleve)

Lithostratigraphic Correlations

Why Environmental Sequence Stratigraphy (ESS)?


The Challenge of Subsurface Heterogeneity

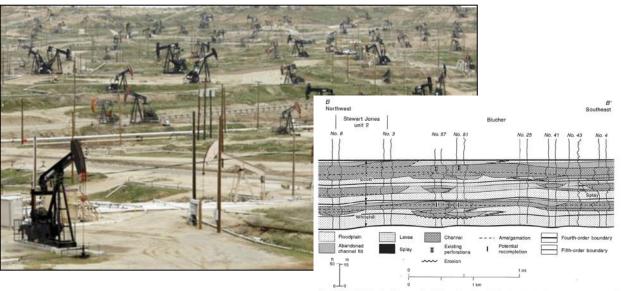
Environmental Sequence Stratigraphy or ESS:

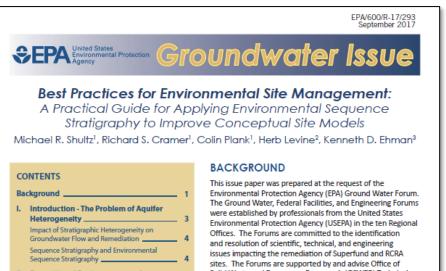
Refers to the application of the concepts of sequence stratigraphy and facies models to the types of subsurface datasets collected for environmental investigations.

Emergence of Petroleum Geology in the Oil Industry

 Early days of exploration and production, once oil reservoir was discovered, production was limited by facilities capacity (engineering focus)

- As production declined, **geology** became increasingly critical for economical operations
- Billions of dollars have been invested in research and development of stratigraphic controls on fluid flow




Figure 3. Dip-oriented stratigraphic cross section B-B' through amalgamated channel sandstones and fooedplain bakies in the Scott/ Whitebill interreductator-frequency and in T-C-B fields. Note that the forv high-frequency units, the lower and poper Whitebill and the lower and opper Scott, exhibit a successive increase in thickness from the lower Whitebill to the upper Scott, See Figure 4a for location. From Kness and McRes (1995).

ESS: US EPA Best Practice – 2017

- Step-by-step guidance document for CSM
- Objective is to improve remedy performance
- 90% of mass flux moves through only 10% of aquifer material...controlled by geology

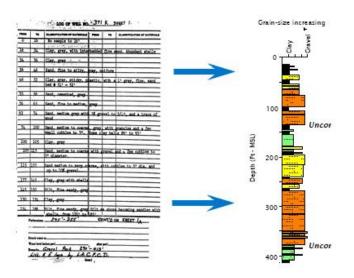
 \rightarrow ...the geology controls where the groundwater flows and, thereby, where contaminants migrate.

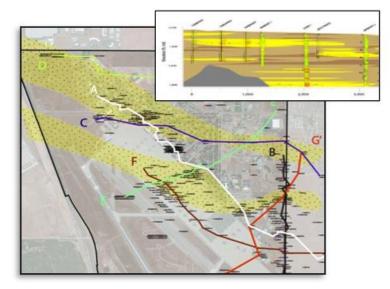
 Link to Groundwater Technical Issue Paper: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100TN2C.PDF?Dockey=P100TN2C.PDF

ь.,	Introduction - The Problem of Aquiter						
	Heterogeneity	3					
	Impact of Stratigraphic Heterogeneity on Groundwater Flow and Remediation	4					
	Sequence Stratigraphy and Environmental Sequence Stratigraphy	4					
II.	Depositional Environments and Facies Models	7					
	Facies models for fluvial systems Glacial geology and related depositional systems						
ш.	Application of Environmental Sequence Stratigraphy to More Accurately Represent the Subsurface Phase 1: Synthesize the geologic and depositional setting based on regional geologic work Phase 2: Formatting lithologic data and identifying grain size trends Phase 3: Identify and map HSUs	12 16					
Conclusions							
References							
Appendix A: Case Studies A							
Appendix B: Glossary of terms B1							

This document was prepared under the U.S. Environmental Protection Agency National Decontamination Team Decontamination Analytical And Technical Service (DATS) II Contract EP-W-12-26 with Consolidated Safety Services, Inc. (CSS), 10301 Democracy Lane, Suite 300, Fairfax, Virginia 22030

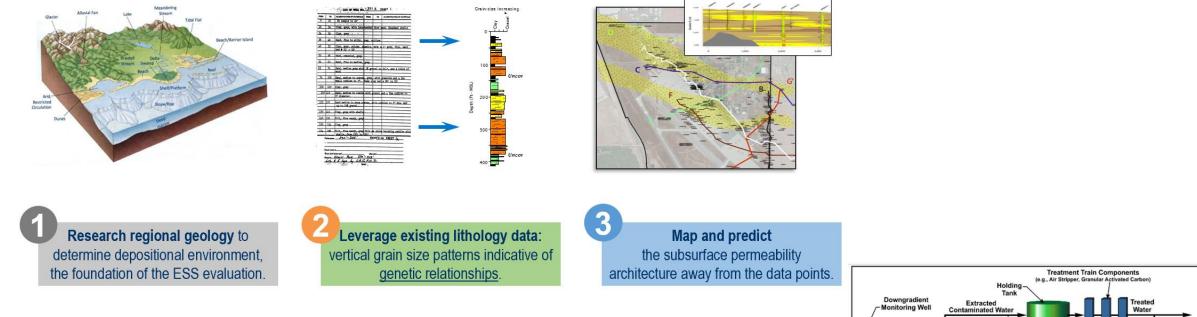
¹Burns & McDonnel PUIS EPA ³Chevron Energy Technology Company Solid Waste and Emergency Response's (OSWER) Technical Support Project, which has established Technical Support Centers in laboratories operated by the Office of Research and Development (ORD), Office of Radiation Programs, and the Environmental Response Team. The Centers work closely with the Forums providing state-of-the-science technical assistance to USEPA project managers. A compilation of issue papers on other topics may be found here:

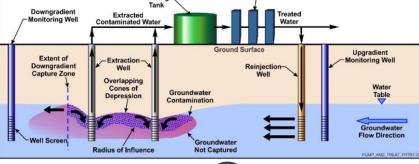

http://www.epa.gov/superfund/remedytech/tsp/issue.htm


The purpose of this issue paper is to provide a practical guide on the application of the geologic principles of sequence stratigraphy and facies models (see "Definitions" text box, page 2) to the characterization of stratigraphic heterogeneity at hazardous waste sites.

Application of the principles and methods presented in this issue paper will improve Conceptual Site Models (CSM) and provide a basis for understanding stratigraphic flux and associated contaminant transport. This is fundamental to designing monitoring programs as well as selecting and implementing remedies at contaminated groundwater sites. EPA recommends re-evaluating the CSM while completing the site characterization and whenever new data are collected. Updating the CSM can be a critical component of a 5 year review or a remedy optimization effort.

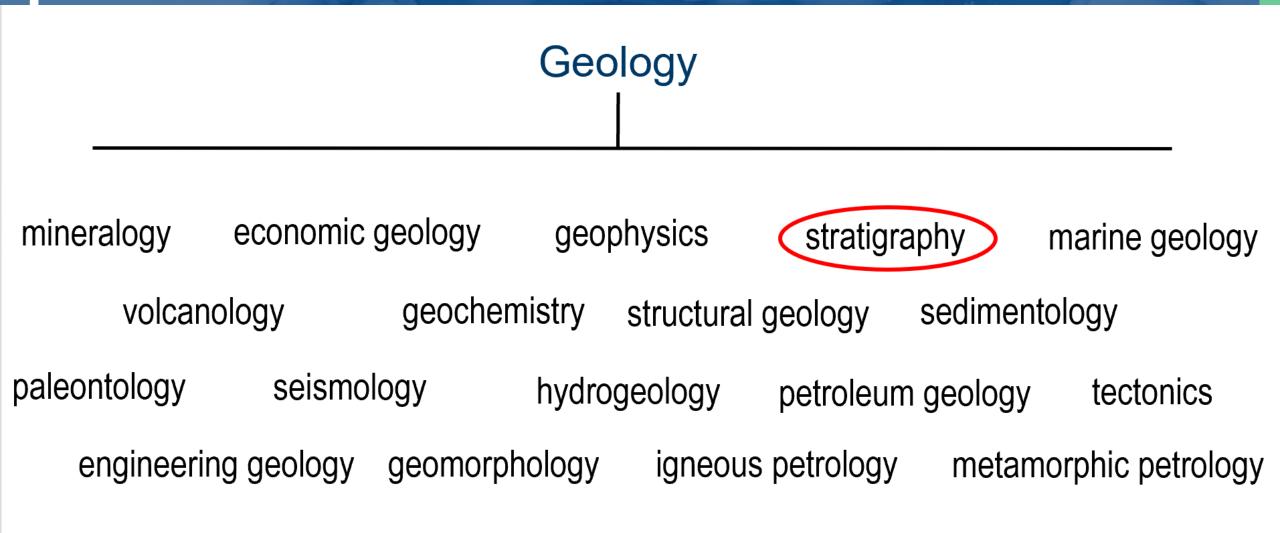
Environmental Sequence Stratigraphy (ESS) and Remediation Geology




Research regional geology to determine depositional environment, the foundation of the ESS evaluation.

2 Leverage existing lithology data: vertical grain size patterns indicative of genetic relationships. Map and predict the subsurface permeability architecture away from the data points.

Environmental Sequence Stratigraphy (ESS) and Remediation Geology



• ===REMINDER, it's all about the K!

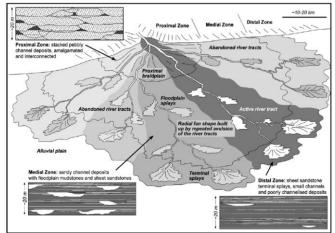
Benefits to Remedial System Design and Operations

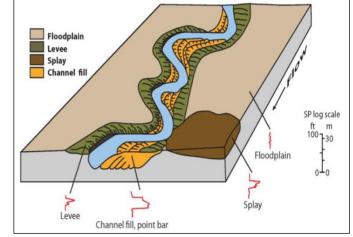
Expertise of the Practitioner

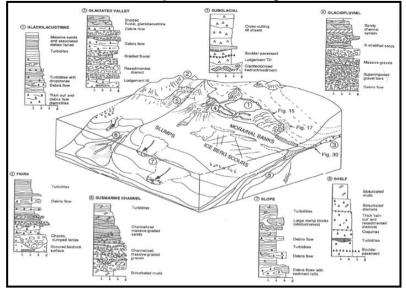
Geosyntec's Environmental Sequence Stratigraphy (ESS) Practitioners

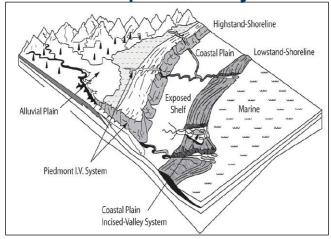
Mike Shultz, PhD Stratigrapher, Sr. Principal Minneapolis, MN Office mike.shultz@geosyntec.com Colin Plank, CPG Stratigrapher, Sr. Principal Grand Rapids, MI Office colin.plank@geosyntec.com Stone UrbanKen O'DonnellStratigrapher,Stratigrapher,Professional GeoloistProfessional GeologistLakewood, CO OfficeWashington DC Officestone.urban@geosyntec.comken.odonnell@geosyntec.com

ESS is About Pattern Recognition



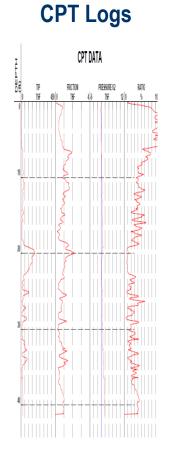

ESS is About Pattern Recognition


Alluvial Fan Facies Model

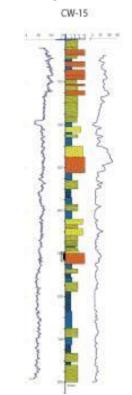


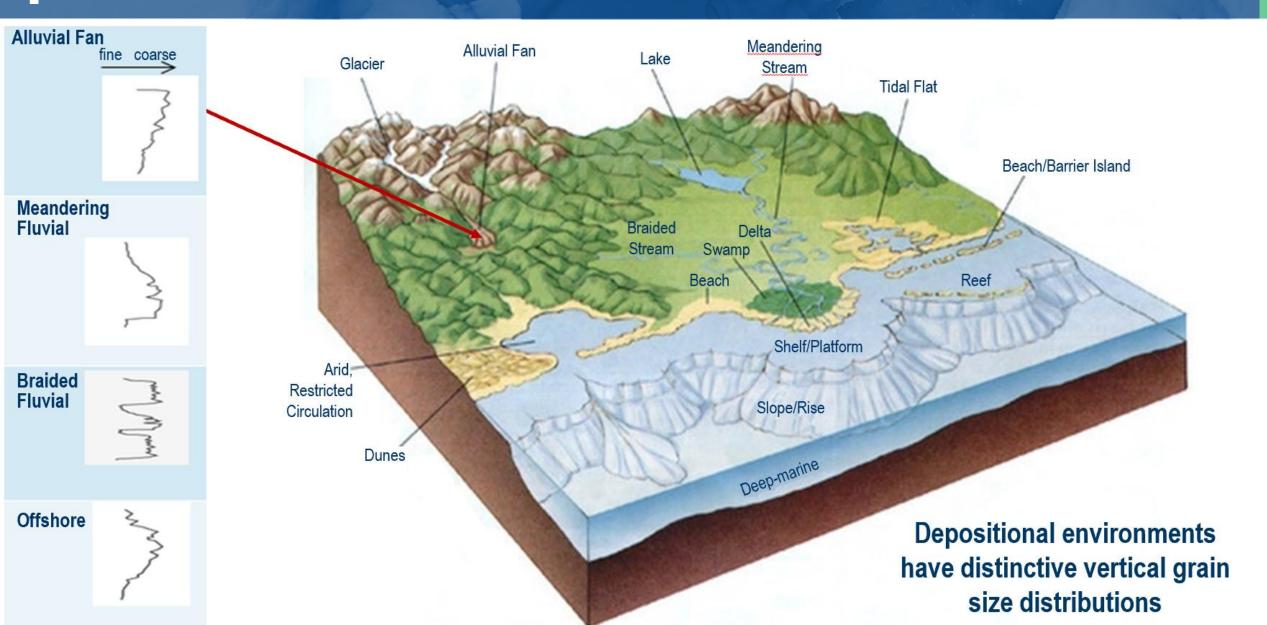
Glacial Depositional Systems

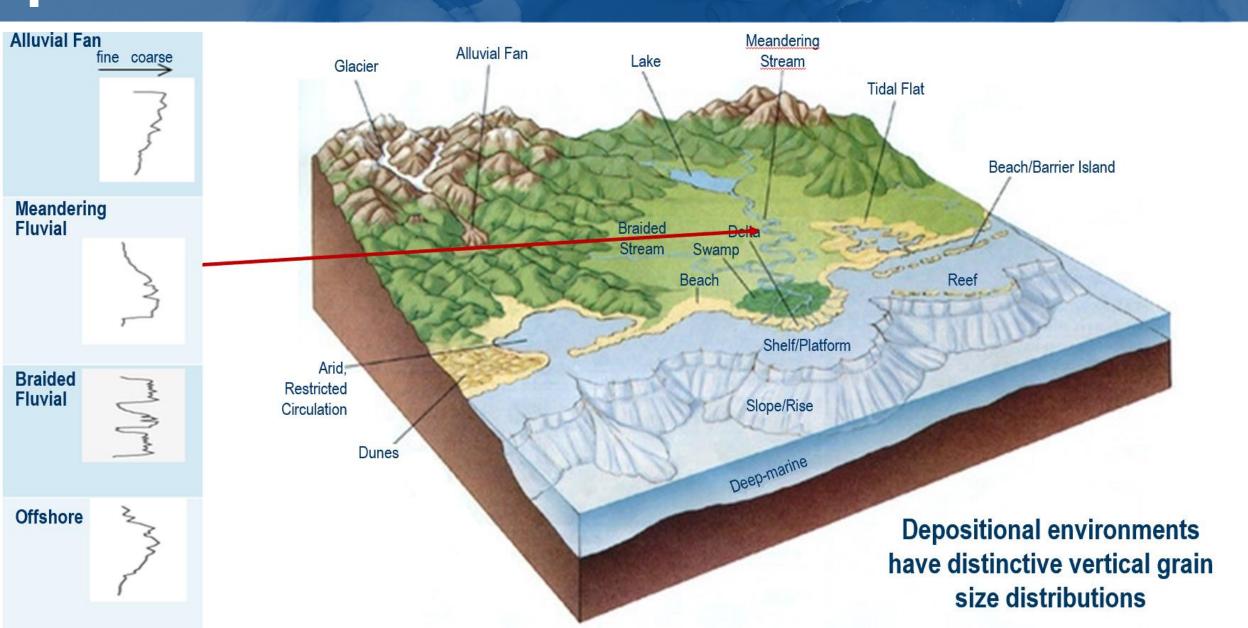
Coastal Depositional Systems

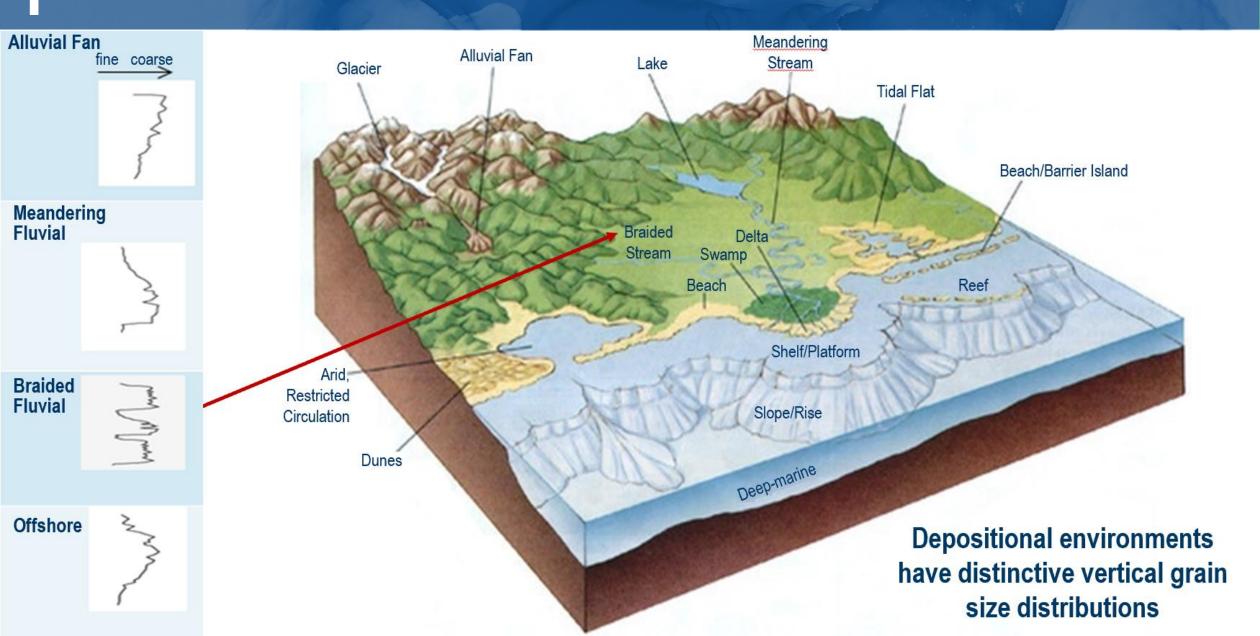


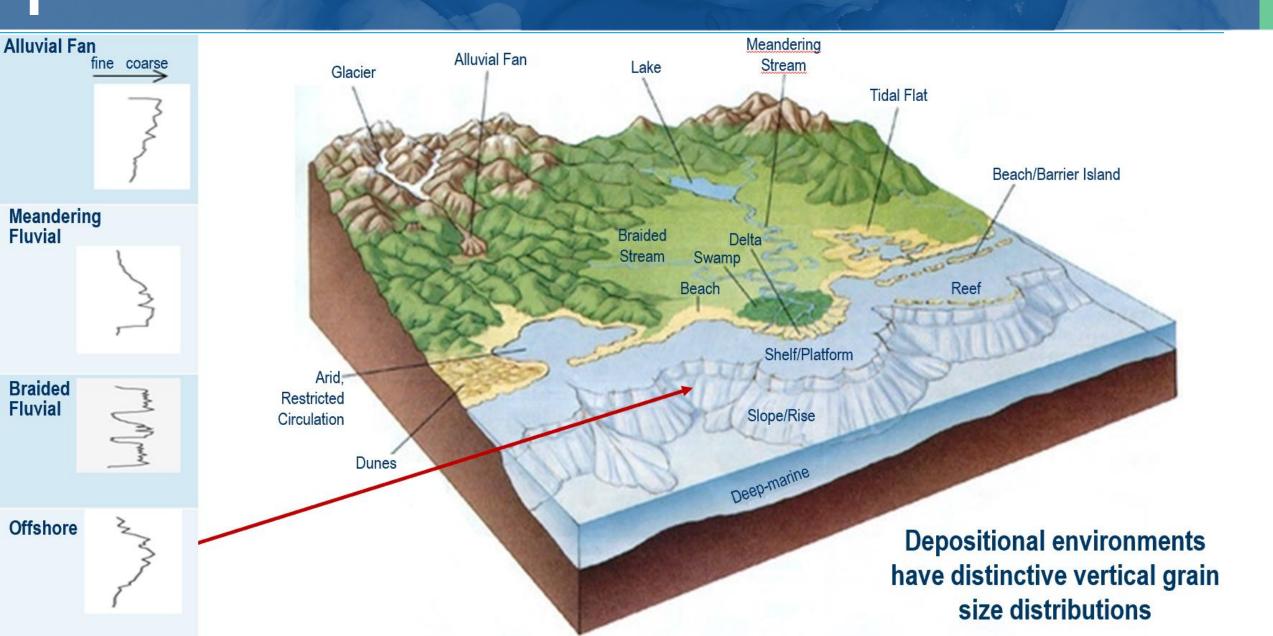
ESS is the Means to Optimize Existing Data

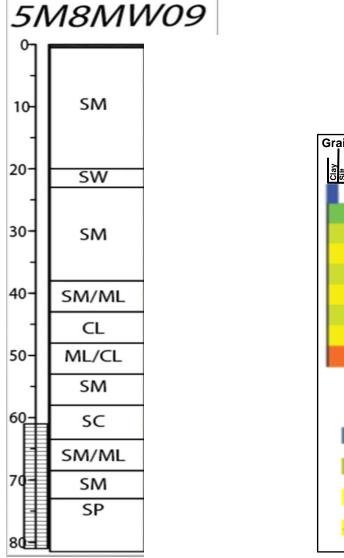

Examples of Lithology Data

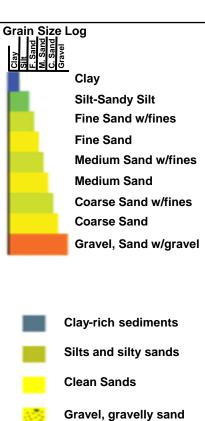

Boring Logs


_			viliales	INCO ALL			Hais Ha	MW-17	
DRIL	LING LO	6	0.4			SWF		or _ waters	8
PROJECT	- 10		E-PHASE IT-MONTHE WELL	-	AND TYPE		O"AUSER		1
LOCATIO	10.00	- (A)	-PHASE IT-Monister WEU	P				~	L
DAILLING	MARKET	604	Jus J	12. BANUFACTURER'S DESIGNATION OF DRILL					1
LISCE					FAILIAKS 1500				
					IL TOTAL HUMBER CORE BOXES N/A				
T. SUITS					IL ELEVATION GROUND BATERCAS PALAANS Contact				
					H. DATE HOLE STANTED CONCEPTED				
E VERTIERL DINCLINED DE4. FROM VERT.					17. ELEVATION TOP OF HOLE 176.57				
				14. TOTAL CORE RECOVERY FOR SORING ALA					1
	EPTH OF		31.0'	active or interaction States					1
EVATION.	-		CLABIFICATION OF MATERI	4	ACCOUNT ACCOUNT	POX OR	ALM		1
				/	-BAV-	101 00 00			L
	0.0		0.0' TO 0.8'			_ <u>A</u> _	I. WATER	LEVEL	E
	=		SILT: LOW PLASTICIT	CRA	Year to		WORKS FREE B	- Birle AUB	ŧ
			0.8' To 4.0'			в	VARS DRILLIN	K FROM	E
	=		CLAY SMEDIUM-HIG GRAVISH BROWNSS STIFF; DAMP-MOIST	N PLA	sticity		10-0-10.	9 + 15.0-	F
	-		GRAYISH BROWN;	miff-	YERY		24 HR. PES		E
	1 3		4.0' 76 7.0'		picity	6			E
	-		SILT : MEDIUM PLACT	én.			WELL CASI	KE WAS AT	E
	1 3		SILT MEDIUM PLAST YELLOWISH BROWN GRAY:MEDIUM-ST	740	440	D	VELOPES .	VAS DE -	E
			VERY MOIST; SUGH	TU SA	-		LEVEL WAS	30.5 4161	£
	1 =		7.0' 70 7.8'		~~/	E	BAILING AT	1325 MAS. 8.0' AT 1355	Þ
	-		CLAY SMEDIUM-HIG	W PLA	steing	-	WAS. 4 5.9	TISIS NRS.	E
	1 3		CLAY : MEDIUM - HIG GRAY BROWN - YELL VERY STIFF - HARD;	outist	erow	F.F.	# 3.3 AT O	TISIS HRS. BIONRS	E
							SAUG.		Þ
	1 3		SITILOW-MENT	RAS	in the	6	2. JAR SA	moves :	E
	13		GRAY WITH YELLO	wise .	andin !	-	A: 0.0' B: 0.8'	- 4.0	E
	=		<u>SILT</u> : LOW-MENTH GRAY WITH YELLO WITH LIENT BU ROM IO. 9: MEN MOIST-VERY MAN FROM 10.0'-IO. TO VERY SANDY FR 10.9'	E GR	Yer.		2:4.0'	- 7.0	Þ
			MOIST-VERY MO	57 6 4	107			- 7.8	E
			FROM 10.0'-10.	7: SA	Jay.	н	4: ?.8 7: 10.0	-10.7'	F
	=		10.9'	and To				- 150'	E
			15.0' To 18.5'			<u> </u>	H:15.0 1:18.5 J:20.5 K:20.7 L:23.0	- 18.5	E
	=		SBUD: FINE GRANE BROWN WITH LIG MEDIUM; SILTY: SAT	o;yeu	Jusiu	11	J;20.5	- 20.7	Þ
			BROWN WITH LIG	NT CI	ery:	L-	K 20.7	- 23.0	E
	1 3		18.5' To 20.5'		Г		M:28.0	- 28.0	E
	1 7 -		SILT : LOW PLASTICA	SY YELL	wisk	K	3. Neiccin	Ki Y AUGER:	F
	1 3		SILT : LOW PLASTICA BROWN WITH LIGH MEDIUM : VERY MOIS	Y GRA	1 in a		10 "Friend	AUGER:	E
			20.5' To 20.7'	- v - 7	- y	1	Ant Ser	8" STALL	Ê
	=	1	CLAN HAR illes - His	W 84	tin.		CASHE TO	31.0'	E
	1 -	1	GRAY & BROWN A VERY MOIST: WIT SILT & SAND	1EDia	1:	14	CASHE TO B ALISH 31.0	AUGER	E
			VERY MOIST WIT	V 7RA	** **		NOTESWE	APE &	F
		1				<u> </u>	Scetter W	TH FILER	Ē
		1	CO.T TE 22.0 SILT + LOW PLASTIC BUIE GRAY + YEL BROWN: MEDJIM VERY MOIST - WE SANDY: WITH FERE STAINS	Tr: L	in		CASING WE	E SET AS	E
	1 -	÷	BULE GRAY & YEL	Low/	w	M		S METECTOR	Ē
	=	1	BROWN MEDILM-	STIFF	ŧ		TURES WE	DE LIKEN TE	E
	31.6	<u> </u>	SANDY : WHAT FARE	je ilo	ls .		Mouther A	COLLERE	E
	1 3		STAINS		Ľ	1	CHLORIDE	ENERY 10.0	۶É
		1				1	- Baretto	LE ADVANTE	-E
	1 3	1	SAND: FINE GRAIN GRAY WITH YELL MEDIUM: SATUR ABUNDANT CARB	40 ; 4	HT B	WE.	MENT. NO A		
	1 3	3	MEDIUM SATUR	owisi The	1 PC	Witter	We about	WERE PRESENT	Ē
	1 -	1	ABUNDANT CARB	od M	TREK	P****	Tectes in	DRILLAS.	Ē
		1	T.D. 31.6'						٦Ē
	1 -	3				1	15 352	etials officer E of Hulls A	-f
	L	1			1	1	SAME ELE	VATION.	ŧ
TO FOR	40 -	1	1						




Geophysical Logs




Getting more from existing data

5M8MW09 SM 10-20-SW 30-SM 40-SM/ML CL ML/CL 50-SM 60-SC SM/ML 70E SM SP 80

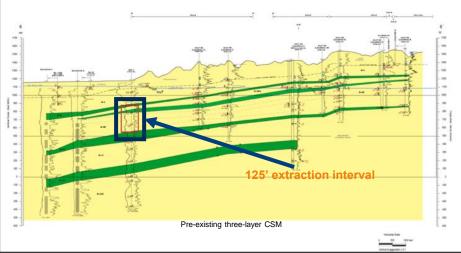
- "All we have are these lousy USCS boring logs"
- USCS is not a geologic description of the lithology
- Different geologists
- Different drilling methods
- Different sampling intervals
- Etc.

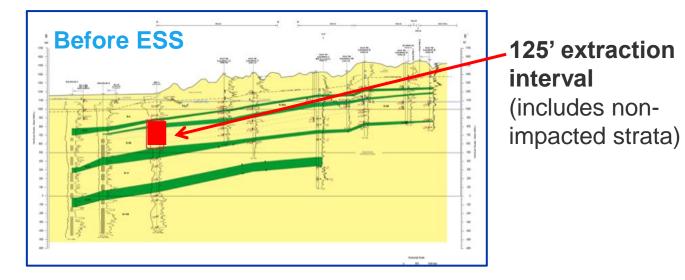
Getting more from existing data

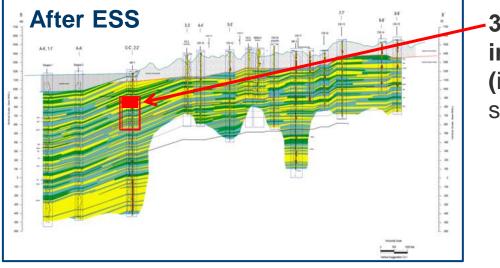
Graphic Grain-Size Logs (GSLs)

- Alternative to the standard of posting USCS symbols
- Existing data is re-formatted for stratigraphic interpretation

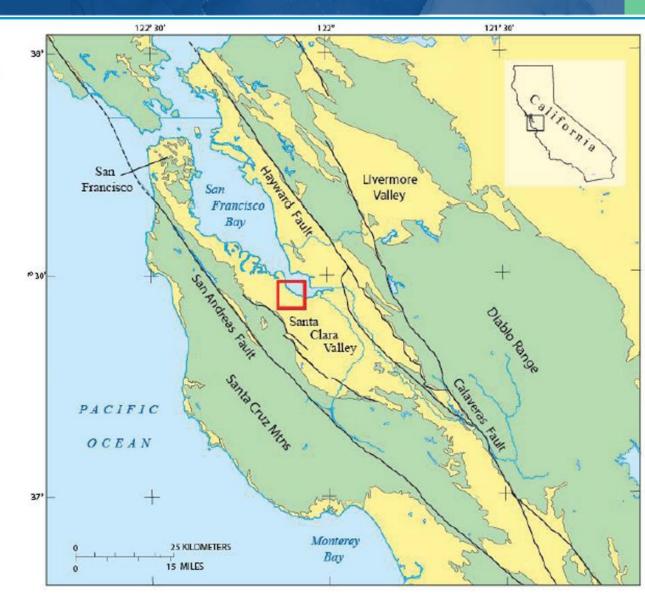
Reveals the "hidden" stratigraphic information available with existing lithology data


Why would you manage your remediation project with an inferior understanding of the subsurface?

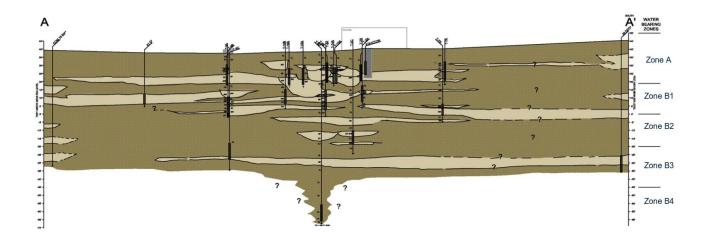

Case Study #5 from USEPA Technical Issue Paper


- 996-acre site in Santa Clarita, California
- Complex geology, more than 600 feet of stratigraphy, dipping beds
- Impacted mainly with perchlorate (CIO₄₋), but locally CVOCs, including TCE
- Awarded contract to implement containment pilot study for agencyapproved RAP based on existing CSM
- But wait...

Cost of Oversimplifying Subsurface Heterogeneity



35' extraction interval (impacted strata only) Significantly reduced quantity of extracted groundwater (by 75%) Significantly reduced cost of remediation (by >\$50

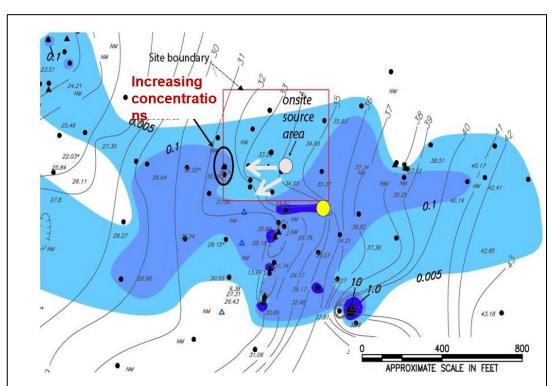

million)

Case Study #1 from USEPA Technical Issue Paper

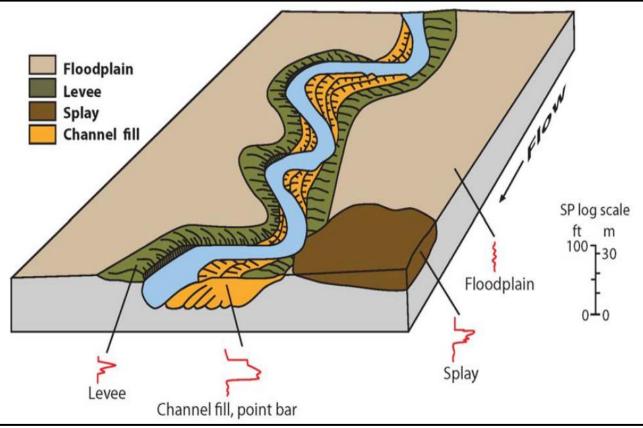
- Former semiconductor manufacturing site with VOC groundwater plume
- Geology changed the regulatory direction of the project
- Definition of co-mingled plumes and related source areas
- Scale: 10-acre study area
- Depositional Environment: Meandering
 river


Case Study #1 from USEPA Technical Issue Paper

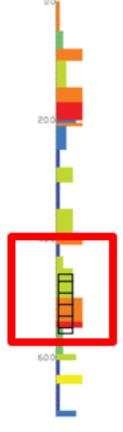
Lithostratigraphic correlations using USCS



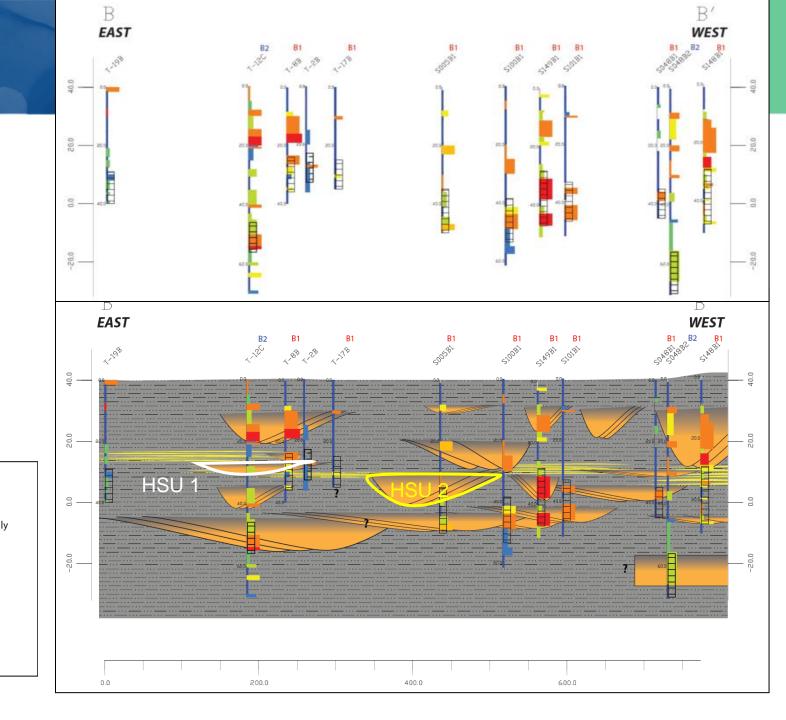
Case Study #1 from USEPA Technical Issue Paper


Lithostratigraphic correlations using USCS

Groundwater flow interpretations assuming homogeneous/Isotropic conditions

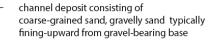

Case Study #1 Grain Size Trends and Graphic Grain Size Logs

Depositional Environment – Meandering River

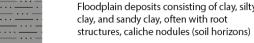


Boring Log -2 LUKS EDDOW 315 17 (Contact - drifer - cuttings) Gravelly SAND (SW); brown; medium dense; <5% clay; 5-10% sill; very fine to very coarse sand; 30-40% fine subangular gravel to 1/4* diamoter; high est K Sity CLAY (CL); brown mottled black; stiff; 30-40% silt; <5% very fine to fine sand; very low est K (Contact - driller - cuttings) Sandy SILT (ML); blue-gray; stiff; 5-10% clay; 20-30% very fine to fine sand; low est K Silty SAND (SM); blue-gray; medium dense; 5-10% clay; 20-30% silt; very fine to medium sand; <5% fine angular gravel to 1/8" diameter; mod est K T-12C (cont.) LL GRAPHIC LOG DESCRIPTION Sandy GRAVEL (GP); blue-gray; dense to very dense; 5-10% clay; 10-15% silt; 20-30% very 50 fine to very coarse sand; fine subangular to subrounded gravel to 1/2" diameter; high est (Contact - driller - cuttings) Sandy GRAVEL (GP); mutlicolored; very dense; <5% fines; 10-20% medium to very coarse sand; 40-50% fine subangular to subrounded gravel; 30-40% coarse subrounded to rounded gravel to 1" diameter; very high est K 5-10% fines; 30-40% medium to very coarse sand; 40-50% fine subangular gravel; no 60 coarse gravel below 54 3/4" Clayey SILT (ML); very light gray; still to very stiff; 20-30% clay; 5-10% very fine to fine

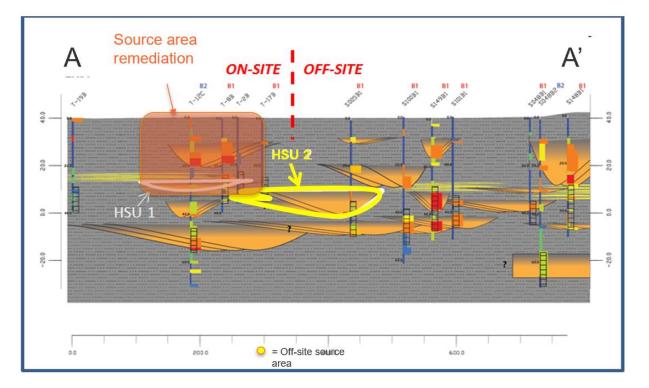
GSL



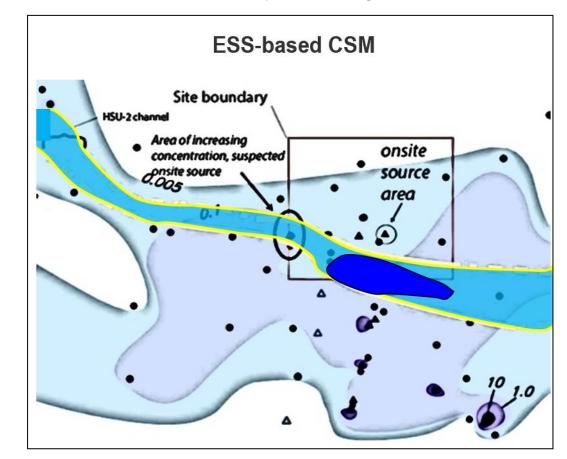
Case Study #1 Posting GSLs/Channel Interpretation



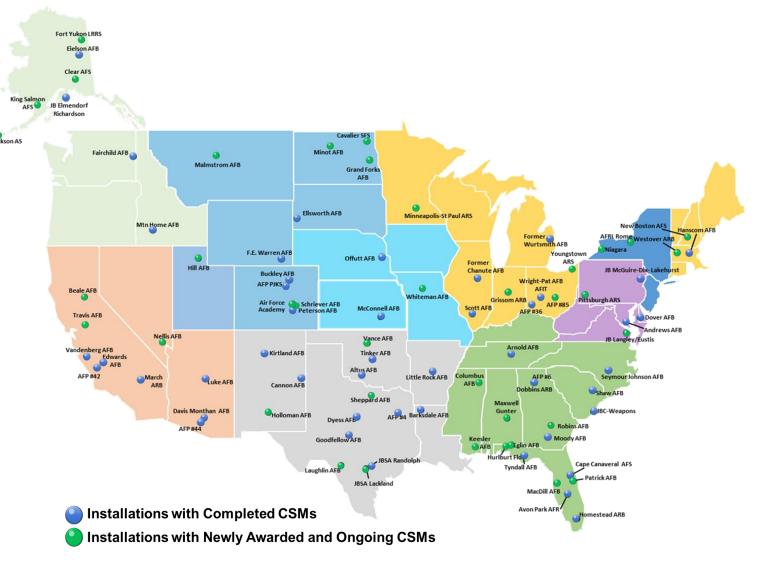
LEGEND



channel margin or splay deposit consisting of coarse-to fine-grained sand, silty sand


Floodplain deposits consisting of clay, silty

Case Study #1 from USEPA Technical Issue Paper


ESS-based correlations based on graphic grainsize logs

Groundwater flow interpretation based on ESS definition of hydrostratigraphic units

Air Force ESS Projects from 2010 to 2023

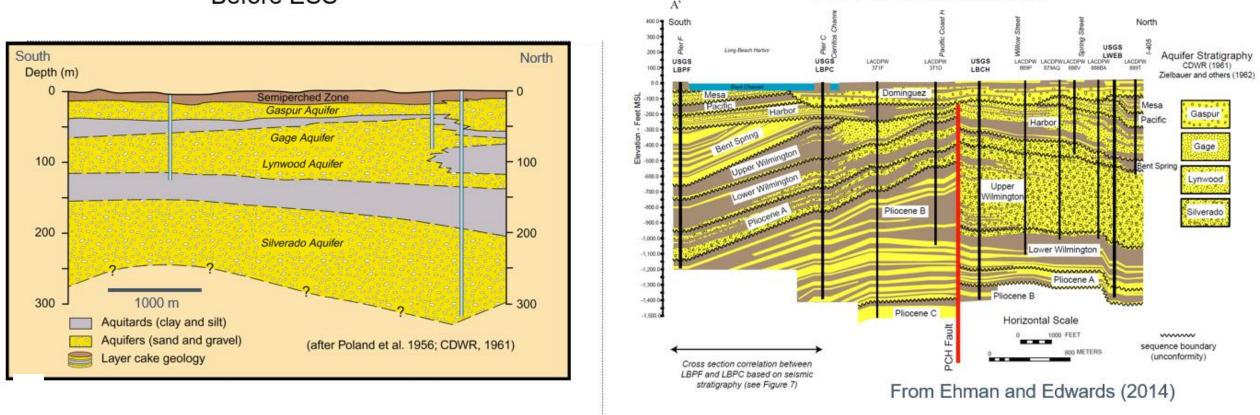
- Applied to over 80 Air Force Facilities
- AFCEC conducted an enterprise-wide study
- 58 ESS reports at active installations in the library
- Lead remediation engineer concluded, remediation design requires an ESSbased CSM to adequately represent the subsurface

Why would you <u>**not</u>** do a geology-focused evaluation of your groundwater project?</u>

New Areas of Focus: Groundwater Management (SGMA) and Geotechnical Support

ESS Application to Groundwater Management

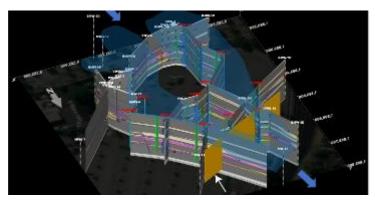
CONJUNCTIVE USE OF WATER RESOURCES: AQUIFER STORAGE AND RECOVERY OCTOBER AMERICAN WATER RESOURCES ASSOCIATION 1997


APPLICATION OF SEQUENCE STRATIGRAPHY TO EVALUATE GROUNDWATER RESOURCES

Kenneth D. Ehman and Richard S. Cramer¹

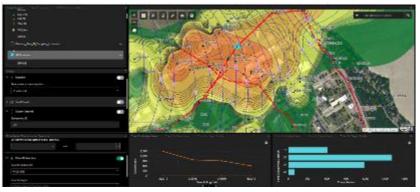
California Groundwater Basin Characterization Program

Before ESS

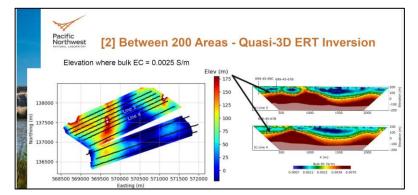


Detailed permeability architecture defined through the application of Environmental Sequence Stratigraphy

GEOSYNTEC CONSULTANTS


ESS Characterization

The State of the Practice


Advanced Methods of Data Interrogation and Visualization:

- Mapping Software and Database Management
 - Increased use of legacy and regional data
- 3D visualizations of HRSC data constrained by stratigraphic data:
 - Fence Diagrams and "dummy points"
 - Stratigraphic Flux type approaches

Advanced Methods of CSM Delivery:

- Digital CSMs
 - Web-Application approaches
 - XYZ data and Strat Surface Files
 - Increasing direct connectivity with numerical modeling approaches

"Marry" Geophysics Interpretations to Geologic Model

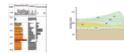
- Geophysics have helped provide a first line of evidence of subsurface structure
- Need a better understanding of electrical properties vs. hydraulic properties vs geologic features

Geophysics and CSMs

"While many seem to think AEM provides the definitive 'x-rays' and nothing further is needed, I have suggested that AEM only provides about 30% of the 'answer' in the quest to better define the regional hydrogeologic architecture. There remain some massive hydrostratigraphy research and characterization opportunities in CA, especially in the Central Valley."

- Dr. Graham Fogg, 2024 Professor of Hydrogeology, UC Davis

Collect More Accurate, Representative, and Useful Geologic Logs Using a Graphical Approach (ER23-7659)


Jessica R. Meyer¹, Colin Plank², Richard S. Cramer², Michael R. Shultz², Charles J. Newell³, David T. Adamson³

¹ University of Iowa; ² Burns & McDonnell; ³ GSI Environmental Inc.

Introduction - Problems with Standard Borehole Logging Forms

A common problem for the remediation field is that remediation performance does not match remediation expectations (McGuire et al., 2016). Much of this discrepancy can be attributed to conceptual site models (CSMs) that fail to properly represent back diffusion from low permeability zones. Geology (and the related permebility architecture) is the primary conrol on groundwater flow and dissusive mass transfer, therefore, highly accurate representations of the subsurface geology are critical to developing accurate CSMs to drive remediation success. The basic steps for building accurate geologic models include (Fig. 1):

1. Determine the depositional environment(s)

2. Use geologic data to identify 3. Integrate steps 1 and 2 to map and predict the geology in bodies of sediment/rock distinguished by characteristics 3-0 related to the processes that formed them

Fig. 1 - Basic steps for building an accurate geologic model.

One of the largest, and arguably most important, data gaps existing in nearly all groundwater remediation studies regardless of geologic setting is the lack of high quality subsurface geologic data in digital formats. This gap is due to collection of the wrong types of data in an inefficient format leading to a poor return on the investments in drilling. Traditional borehole logging forms capture primary geologic data in a paragraph format along a depth scale bar and often emphasize the Unified Soil Classification System (USCS) description of the materials (Fig. 2).

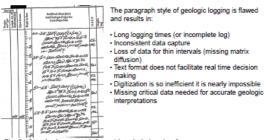


Fig. 2 - Standard paragraph format borehole logging form.

Inconsistent, inaccurate, and incomplete geologic data combined with a lack of advanced geologic training result in unrealistic geologic interpretations. These interpretations often focus on connecting like lithologies, or in many cases USCS classifications, at similar elevations. This results in interpreted sediment bodies with unrealistic dimensions, continuity and geometries. Consequently, predictions of the geology and associated hydrogeologic properties away from borehole locations are highly uncertain.

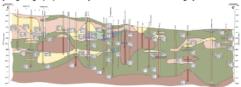
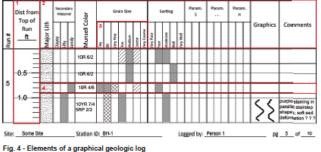



Fig. 3 - Cross Section of borehole data correlation based on similar lithology and no incorporation of the depositional environment and genetic relationships

Graphical Geologic Logs - A Solution

The purpose of this ESTCP technology transfer project is to introduce the groundwater remediation community to a better way to collect and record geologic data by using graphical geologic logs. The elements of a graphical geologic log are described by Fig. 4.

1. A depth scale runs along the far left side of the log.

2. There is a vertical panel for each parameter being logged. Essential parameters for sedimentary systems typically include general lithology, color, grain size, sorting, sedimentary strucutres, and bedding. Other parameters of interest (e.g., grading, sediment distrubance, bulk mineralogy, etc.) are included by adding additional vertical panels.

3. Within each parameter panel there are columns containing the acceptable values for each parameter 4. For each depth interval representing a consistent set of geologic materials the data is captured by shading in the correct cell-value for each parameter. Variations in shading (e.g., solid, hatched, crosshatched) can be used to denote the relative proportion or intensity of a parameter.

Graphical geologic logs were developed and tested over the past 15 years during ongoing research at contaminated groundwater sites. This graphical style of log has been used to capture geologic data from siliciclastic (Fig. 5) and carbonate sedimentary rocks and unconsolidated sediments deposited in a variety of settings (Meyer et al. 2022).

Advantages of graphical geologic logs include:

- Easily learned
- Serves as a road-map to guide loggers and ensure consistent collection of all important geologic parameters
- Facilitates efficient collection of geologic data
- Log is prepared to scale so its immediately useful to suport real time decision making
- Is more efficient to digitize; data can be stored in complementary database

Data is amenable to quantitative analysis

Annual Contraction of the second seco	aytal ayta ayta ayta ayta ayta ayta ayta	93063	1 Cannue
			-
			A STAL FROM AN
198 W.			AND ADDRESS SALARS
- Contraction of the second			 A coder proto and beer signar, A back profit follows, A back profit follows, A back of the state
20 (05.3°L)		1 25	A L'AND DUTTING NOTING VIELOURS TIME VIELOURS NAMES
CYECK MODE - COM	20 M	10	Talk Bolt Cars 1
Sec.U.S.			THY SUBSI CHEMP "
	C. C. C.		I man, lang the
Carson Bell and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 × × ×	
			County County Co
107*			avail + callery
10			a and takes a more than takes
		Lange PL	

Fig. 5 - Example graphical geologic log for siliciclastic sediments depoisted in an inland sea on a broad shallow ramp

Benefits of Improved Geologic Data and Interpretations

Understanding of the depositional processes that form subsurface strata enables prediction of the 3-D distribution of sedimentary characteristics, geometry, and connectivity away from areas with detailed subsurface data (Fig. 6). This method of developing accurate 3-D geologic models has been honed specifically for groundwater remediation investigations and is referred to as Environmental Sequence Stratigraphy (ESS) (Shultz et al., 2017). Robust geologic models improve:

· Hydrostratigraphy, the framework for all CSMs

 Well construction to minimize blending and reduce uncertainty in hydrogeologic measurements Evaluation of the impact of diffusion on

transport and remediation in source zones and plumes

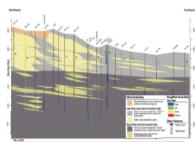


Fig. 6 - Revised cross-section shown in Fig. 3 created by trained stratigrapher applying geologic interpretation of glacio-lacustrine, deltaic sands and density current derived sediments. The revised cross-section shows the geometry, orientation, and connectivity of the sand and clay bodies

Coming Soon - Learn How to Use Graphical Geologic Logs

This ESTCP project includes creation of two types of open access educational materials designed to teach others how to capture geologic data using graphical geologic logs: 1) templates and tutorials prepared for current professionals and 2) a core logging laboratory activity for post-secondary courses. The tutorial (Fig. 7) will include:

· presentations and videos describing the issues with traditional logging formats and graphical shading log techniques.

 templates for graphical shading logs designed for common depositional environments, access database templates to store the geologic data and interpretations, · examples of how improved geologic data can be used to develop improved geologic models using ESS

· exmaples of how improved geologic data and models can be used to evaluate the influence of diffusion on transport and remedation

References and Other Info

Meyer, J.R., Munn, J.D., Kennel, J.R., Amaud, E., Parker, B.L., 2022. Graphical shading logs - an improved approach for collecting high resolution sedimentological data at contaminated sites. Groundwater Monitoring & Remediation, 42(3): 59-74. https://doi.org/10.1111/gwmr.12521

Shultz, M.R., Cramer, R.S., Plank, C., Levine, H., Ehman, K.D., 2017. Best practices for environmental site management: A practical guide for applying environmental sequence stratigraphy to improve conceptual site models. 600/R-17/293, US EPA.

McGuire, T., Adamson, D.T., Neweil, C.J., Kulkami, P., 2016. Development of an expanded, high-reliability cost and Ô٥ performance database for in-situ remediation technologies. ESTCP Project ER-201120.

		Depth	
		Drilling E	Drilling
		FID/PID at surface casing (ppm)	Proa
FtMin or FUHr			ress
Smooth, Chatter, Heavy Chatter, Loss of Circulation		Rig Motion	
Grab, Discrete		Sample recovery, type	
		Sample Interval	
		Munsell Color Code	
		% Clay	
Non High Med Low		% Silt Plasticity of fines	
0.0029* lb 0.017*. No 40-200		% Fine Sand	
0.017" to 0.079", No 10-40		pue	Ge
0.075' to 0.15'. No 4-10			ologi
VR. A. SA. SR. R. VR		and	c De
0.19 ² fo 0.15 ² , 20mm to No 4		% Crare Gravel	scri
		vel	ption
0, 1, 2, 3, 4		Degree of sorting	
Rk frags, Quartr, Feldspar, Dark mins		Sand Composition	
None, Slight High		Cementation / HCI reaction	
Yellow, Ocifre, Red, Gray, Black		Mineral staining/Redox	
		USCS Code (if required)	
		-grain	
		GRAVE	
		Inoq	
		Texture Grain size and other n fossils, color)	
		notes (structures, palaeocurrent	
		Comments (drilling-induced deformation or homogenization, fossils, root casts other pedogenic features, sedimenta facies, potential confining bed or high-permeability unit)	
Client:	Drill Pad Sketch Map LOG Of Ext	Log of Exploratory Boring	
Site: Surface geologic unit and expected subsurface geology			
Logged by: Drilling Co :			
Driller.			
Drilling Method:	Pade	BURNS	-
			i.

	Drilling	Progr	ess									Geo	ologi	ic C	Descri	ptic	on											
Depth	Time	FID/PID at surface casing (ppm)	Penetration rates/ drilling observations	Rig Motion	Sample recovery, type	Sample Interval	Munsell Color Code	% Clay	% Silt	Plasticity of fines	% Fine Sand	% Medium Sand	% Coarse Sand	Roundness of Sand	% Fine Gravel % Coarse Gravel		Roundness of Gravel	Degree of sorting	Sand Composition	Cementation / HCI reaction	Mineral staining/Redox	USCS Code (if required)				- grain		Texture Grain size and other notes (structures, palaeocurre fossils, color)
-					e)							40 50		R R				w (1) 1	Qtz	N 				255	1			Massive, fine to medium sa sparse bioturbation
1	_				(vibracor						40	60		R.										222				sparse bioturbation
-					95% recovery (vibracore)						40	50 1	10	R))))				sparse bioturbation
2 —	_				95%							50 z		*			r	¥ 1W										grainsize grades to medium/coar
3—					e)						+												1					Cross-bedding
5					(vibracore)			95 20	5 10	H L	10	60		- R				-	2,D					21			-	sharp contact clay, massive bioturbation and flaser bedding
4	_				ecovery (20	30 10 10	L	40 10 10	60		R R					2,D 2,D									ly cross bedded here sparse flasers irregular contact
					95% re			60			10	108	30					1_4	Q,D Q,D				00100			+++	-	lar sands in silty clay matrix, possible medium sand ticular bedding grading downward
5 —	_							30	20	н	50			R						↓			()(3				lavey

Rick Cramer rick.cramer@geosyntec.com

