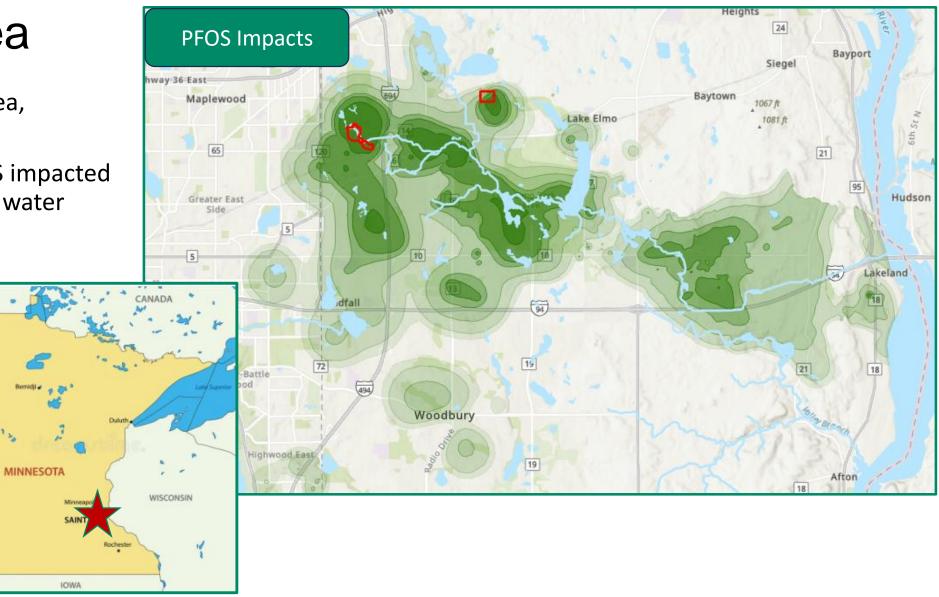


Evaluation of PFAS Removal by Surface Active Foam Fractionation and Destruction by Electrochemical Oxidation

Hanna Temme, PhD Laura Lewis Rebecca Mora

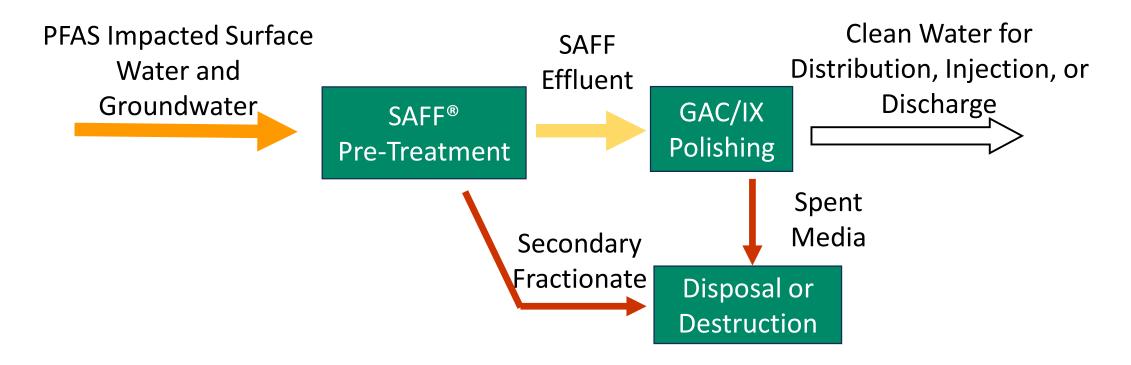
Project Area


- Twin Cities east metro area, Minnesota
- Over 125 sq miles of PFAS impacted groundwater and surface water

NORTH DAKOTA

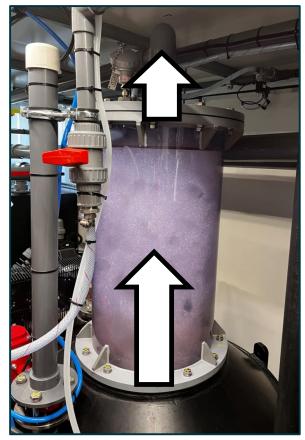
1

SOUTH


DAKOTA

Feasibility Study

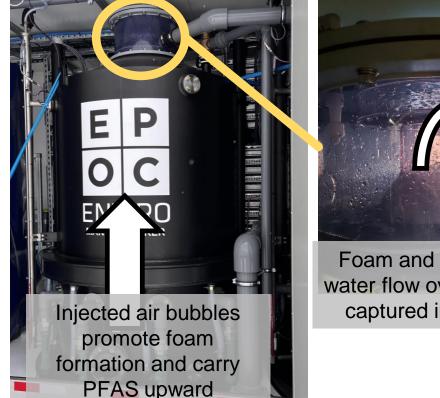
- Completing a feasibility study for Minnesota Pollution Control Agency (MPCA) to address PFAS impacts
- MPCA considering multiple technologies and treatment train alternatives
- Specifically considering technologies that may reduce filtration media


Possible Treatment Train

- Surface Active Foam Fractionation (SAFF[®]) one possible technology
- SAFF[®] could be used as a standalone technology or as pretreatment to filtration to reduce costs
- Pilot study focused on SAFF[®] Pre-Treatment followed by destruction of concentrate

Surface Active Foam Fractionation (SAFF[®])

- 1. Inject air into water
- 2. PFAS foams
- 3. Remove foam

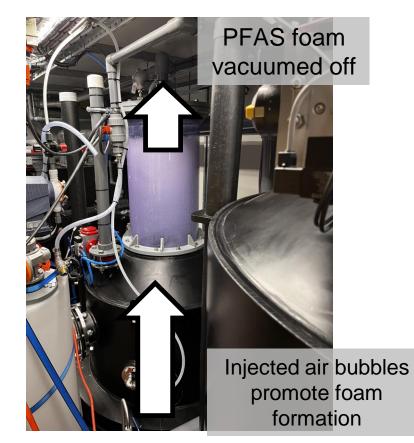


- Pilot study used a SAFF[®]20 from EPOC
- No surfactants used

SAFF[®]: Two Stages Process

Primary Fractionation

• **Goal:** Minimize PFAS concentration in effluent



Form and top layer of

Foam and top layer of water flow over cone and captured in top hood

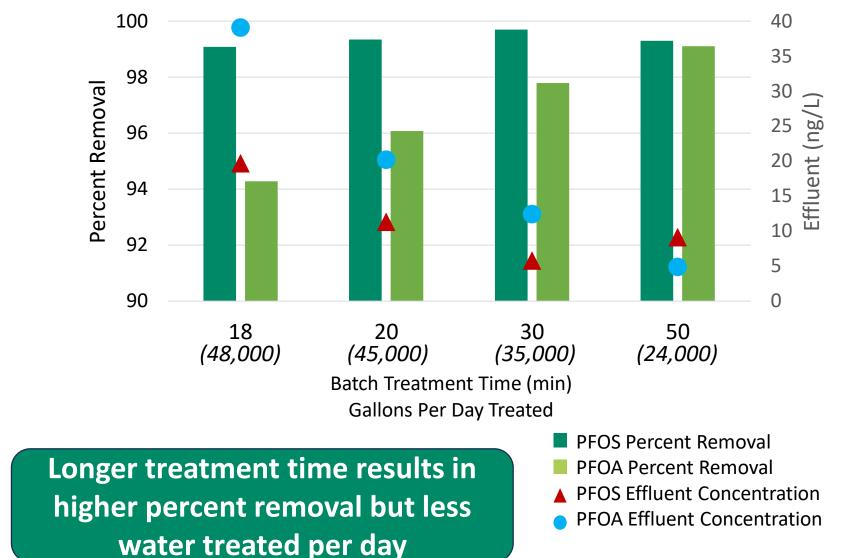
Secondary Fractionation

• **Goal:** Minimize volume of PFAS concentrate prior to destruction or disposal

Water Sources

Site selected because of access to impacted surface water and impacted aquifers

Foam readily forms on


Raleigh Creek

	PFOS	PFOA	Total Organic Carbon
Raleigh Creek	2,000-3,000 ng/L	700-900 ng/L	6.5 mg/L
Shakopee Aquifer	950 ng/L	330 ng/L	<0.5 mg/L
Jordan Aquifer	1 ng/L	22 ng/L	<0.5 mg/L

Raleigh Creek Treatment

Foam formed during primary fractionation

Raleigh Creek Optimized Results

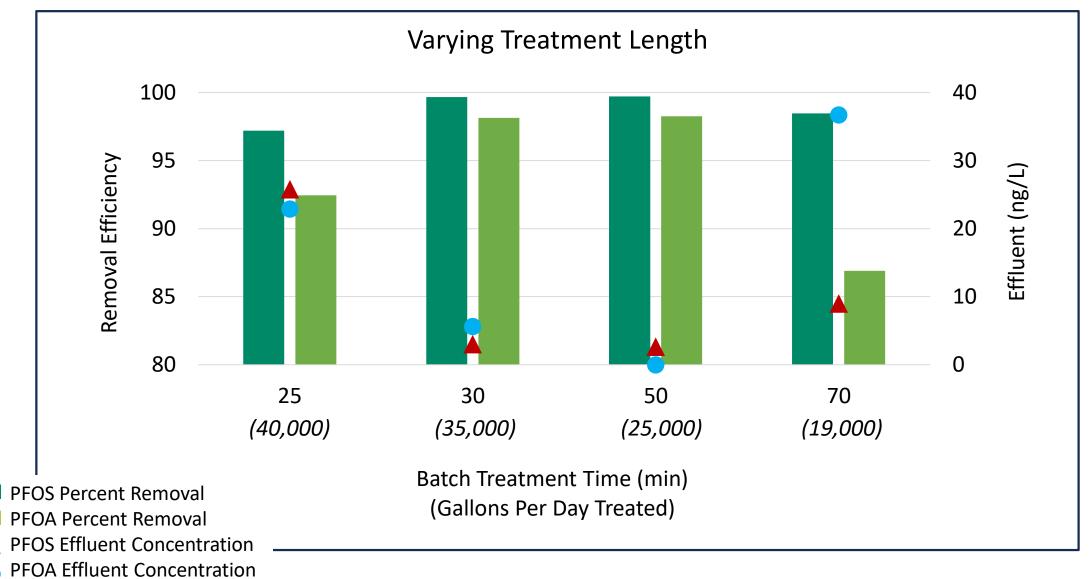
PFAS	Influent (ng/L)	Effluent (ng/L)	Percent Removal	Surface Water Quality Criteria (ng/L)
PFBA	303	175	42	5,700
PFHxA	51.5	22	57	220
PFOA	515	2.12	99	25
PFBS	18.4	8.08	56	140
PFHxS	41.1	1.69	96	20
PFOS	1570	1.8	99	0.05

 Removal observed to be variable with changes in flow and PFAS concentrations

- PFOS: 1.8-5 ng/L
- PFOA: 2-4 ng/L

Met criteria

Exceeded criteria


Shakopee Aquifer Treatment

No foam observed during primary fractionation

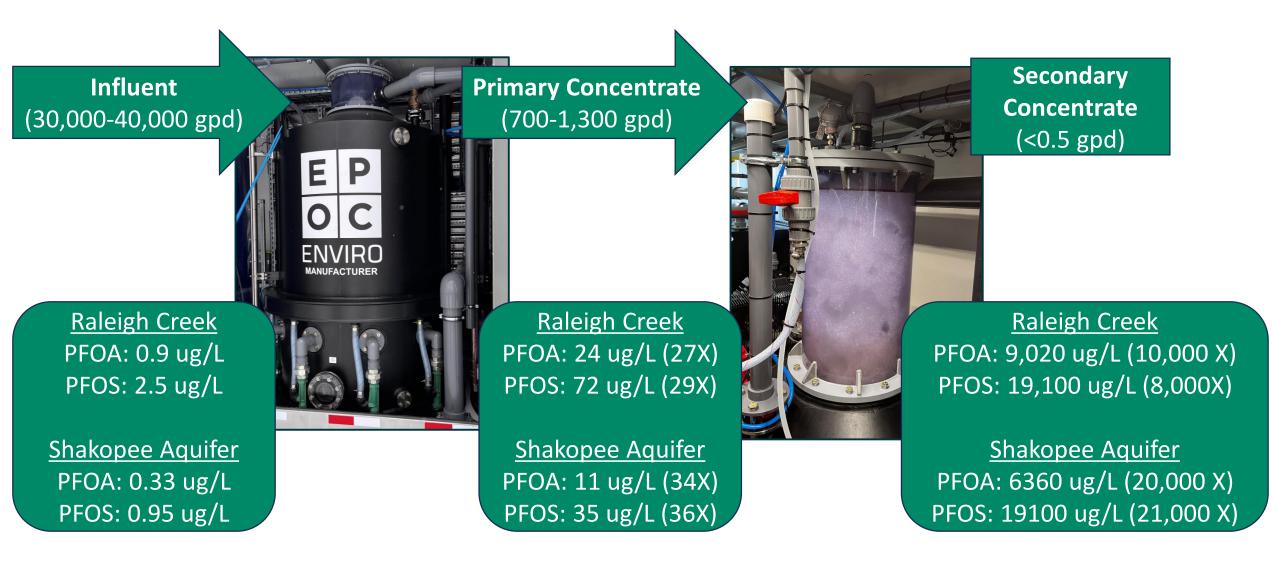
- Tested conditions to improve efficiency:
 - Higher air injection
 - Addition of clean water to push PFAS out of top cone
 - Dosing with PFAS concentrate
 - Oscillating between high and low air injection
- Able to achieved over 99% removal of PFOS and PFOA with oscillation method
- Removal by bubble fractionation

Shakopee Aquifer Treatment

Shakopee Aquifer: Optimized Results

PFAS Analyte	Influent Concentration (ng/L)	Effluent Concentration (ng/L)	Percent Removal	MDH HBV/HRL (ng/L)
PFBA	372	361	2.96	7,000
PFHxA	44.3	36.1	18.51	200
PFOA	281	<0.887	>99.68	0.0079
PFNA	2.12	<0.887	>58.16	
PFBS	15.4	13.5	12.34	100
PFHxS	34.1	1.62	95.25	47
PFOS	939	2.67	99.2	2.3

Low foaming water can be effectively treated with SAFF

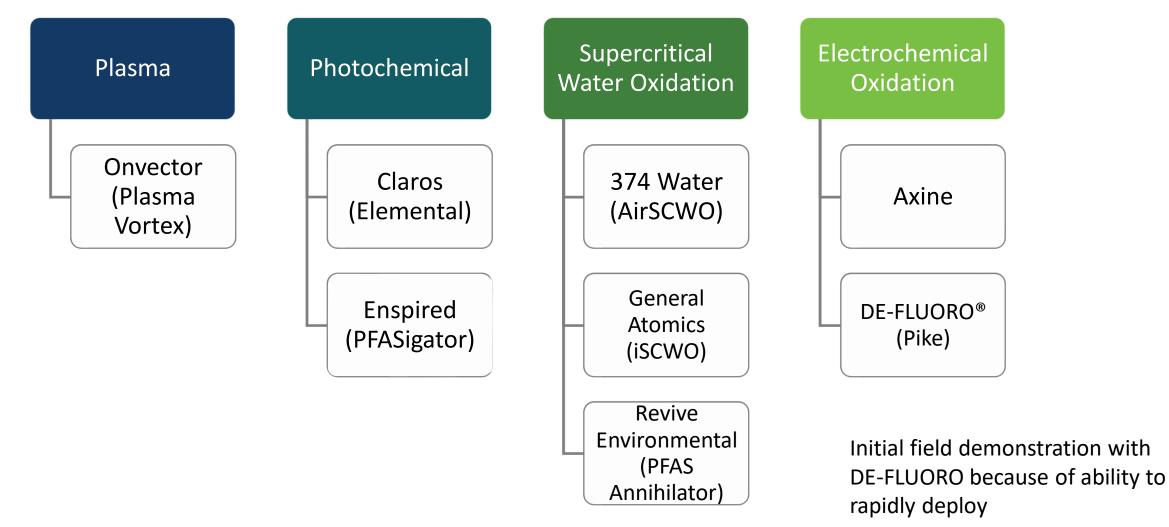

- Variations observed in long term study
 - PFOS: 2 to 5 ng/L
 - PFOA: ND to 7 ng/L
- Adjustment of settings results in decreased PFOS effluent concentration but increased PFOA effluent concentration

Jordan Aquifer: Optimized Results

PFAS Analyte	Influent Concentration (ng/L)	Effluent Concentration (ng/L)	Percent Removal	HBV/HRL (ng/L)
PFBA	392	391	0	7,000
PFHxA	6.35	5.84	8	200
PFOA	26.5	4.95	81	0.0079
PFHxS	0.791	<0.402	>49	47
PFOS	0.92	<0.402	>56	2.3

PFAS removal occurs with low concentrations but less effective

Optimizing Secondary Fractionation: Concentration Factor Comparison



SAFF Lessons Learned

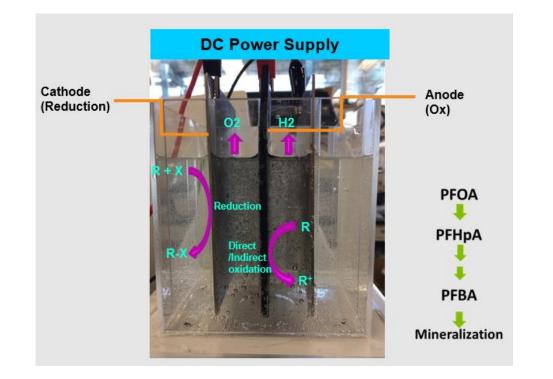
- Effective removal and concentration of PFAS even when foam is not formed
 - Polishing may be required to achieve treatment objectives
 - Rapid Small Scale Column Studies in progress to determine media savings
- Air emissions control is needed as some PFAS is likely being aerosolized
- Operations and maintenance will be simplified when the system is no longer in a shipping container

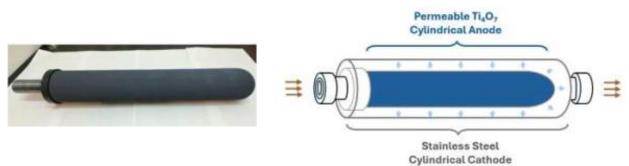
Bench Scale Testing of Destruction Technologies with SAFF Concentrate

Field Demonstration of Electrochemical Oxidation

PFAS Impacted Groundwater (30,000-40,000 gpd)

> Recirculated Effluent





Clean Water Discharged to Surface Water

> PFAS Concentrate <0.5 gpd

Destruction by Electrochemical Oxidation

- Current applied across anode-cathode pair
- Direct oxidation as electrons are transferred from PFAS via direct contact at the anode
- Additional advanced oxidation mediated by hydroxyl radicals generated in reactor
- Electron transfer sequentially defluorinates PFAS leading to complete mineralization (formation of carbon dioxide and fluoride)
- Transitioned early on to reactive electrochemical membrane (REM) electrodes
- High surface area, durable, flow-through operation, commercially available
- Proof of concept began at bench-scale

DE-FLUOROTM Field Deployment

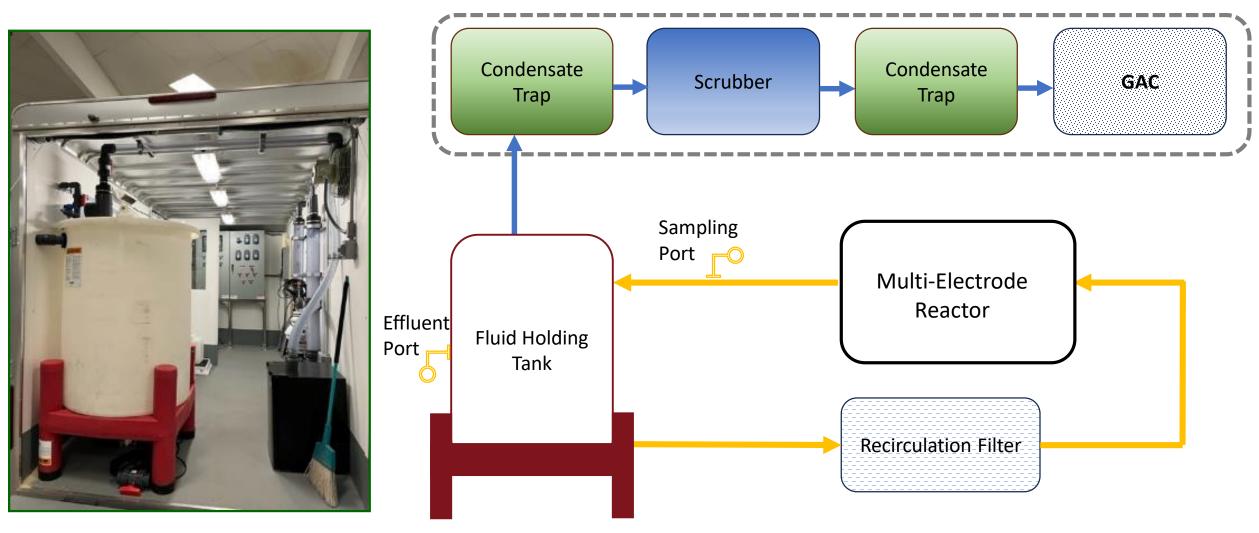
- Bench-scale testing & analysis at Testing Facility
- Prompt data for decision making

- Demonstration program
 On or Offsite
- Informs design of a fullscale treatment program

Application for this project

- Customized system deployment to meet treatment objectives
- Turn-key destruction solution
- Lease, operation & maintenance plans available

PFAS Concentrate from SAFF

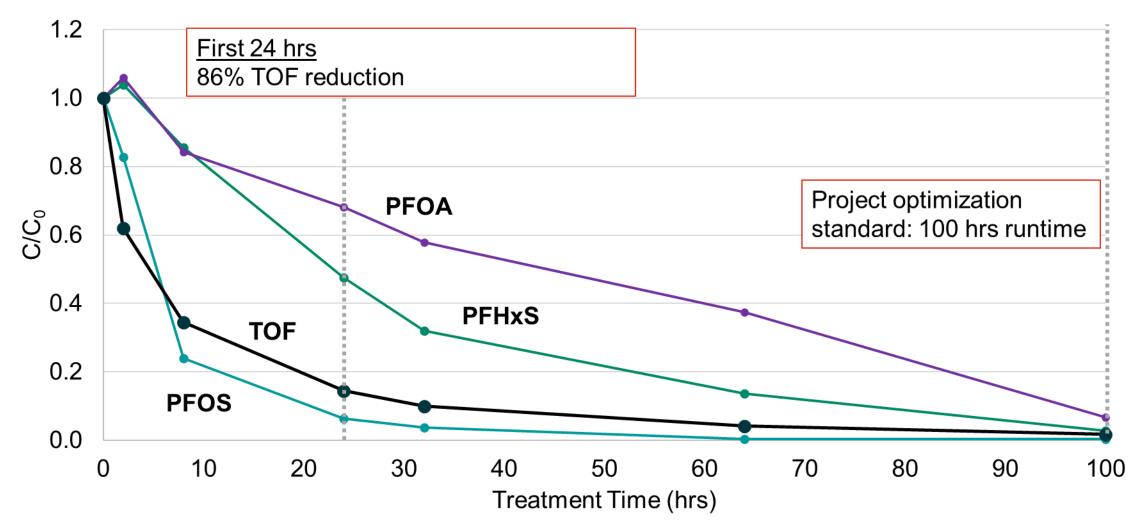

	PFOA	PFOS	PFHxS	Total PFAS	TOF
		Nanog	grams per liter	(ng/L)	
Shakopee Aquifer Groundwater	281	939	34.1	2,254	2,100
SAFF Concentrate 1	100,000	474,000	6,420	595,929	580,000
SAFF Concentrate 2	110,000	436,000	6,390	562,164	490,000

TOF: Total Organofluorine

DE-FLUORO[™] Self-Contained System - Process Flow

Emission Controls

GAC: Granular Activated Carbon


Demonstration Control Parameters

Field optimization of following parameters:

- Air flow rate across holding tank
- Electrode current
- pH and electrolyte additives--feed rates and locations
- Temperature

✓ Results inform full-scale implementation

Process Optimization: PFAS Reduction

TOF: Total organofluorine

TOF Used to Evaluated Fate of PFAS

- Total Organofluorine by Method MLA-119
- Accounting for TOF demonstrates destruction effectiveness

Percentage

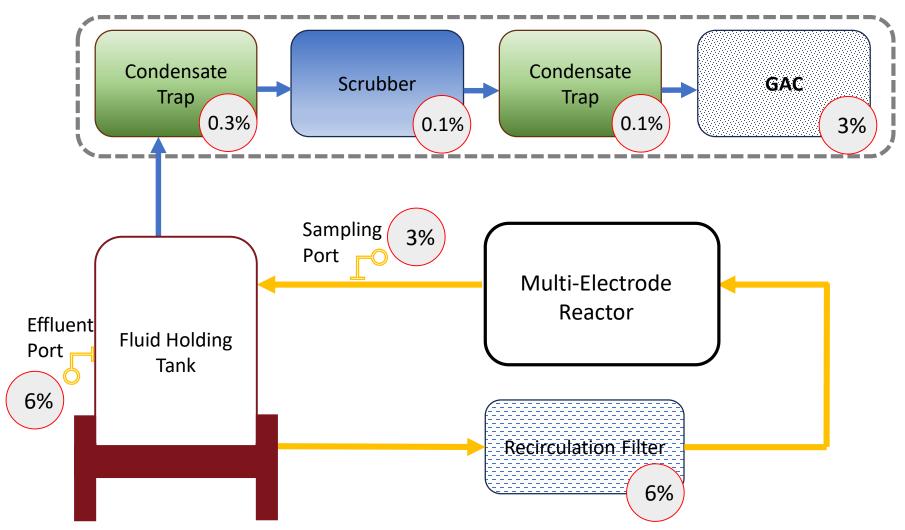
100%

13%

6%

81%

• System elements are monitored


TOF

∑Components

Initial

Effluent

Balance

Emission Controls

GAC: Granular Activated Carbon

EO Lessons Learned: Air Emission System

Aerosolization can be minimized through operational settings

Optimization

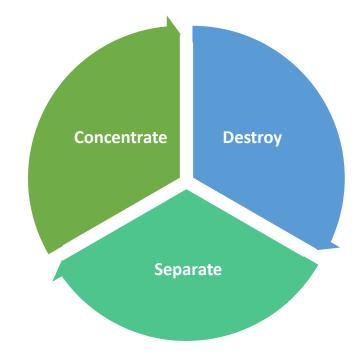
- Managed emissions of H_2 and HF
- Controlled aerosolization of PFAS

In air emission system GAC and scrubber:

- Experiment 1: 6% of initial total PFAS
- Experiment 2: 3.5% of initial total PFAS

EO Lessons Learned: Foam

Minimizing foam ensures PFAS are being destroyed and not transferred into foam


- If foam is not dissipated, effluent concentrations do not reflect destruction
- In practice we incorporated foam management and controls

EO Lessons Learned: Closed Loop Operation

Closed loop treatment train enables flexibility in PFAS treatment optimization

- Optimizes performance
- Controls by-products
- Reduces overall energy consumption by limiting destruction within optimal range
- PFAS waste does not leave the site (reducing liability)

Next Steps

- Evaluate SAFF performance with other feedwaters
 - Different location at Site
 - Reverse osmosis reject water
- Determine savings in GAC and IX media to achieve treatment goals with use of SAFF
- Compare EO to other PFAS destruction technologies
- New field demonstration at a different site with SAFF + improved EO is planned for Winter 2024

Acknowledgements

Project Team Laura Lewis Daryl Beck, PE Geoff Goodwin Rebecca Higgins, PG Drew Tarara Andrew Wilcox

DE-FLUORO Team Rebecca Mora Rosa Gwinn, PhD Francisco Barajas, PhD **Rachel Casson** Hyunshik Chang, PhD PE Keith Maxfield Lucy Pugh **Gavin Scherer Brett Wendel**

MPCA Andri Dahlmeier <u>EPOC</u> Jon Heffer Naresh Isidore

Peter Murphy

AECOM

THANK YOU!

Hanna Temme (hanna.temme@aecom.com) Laura Lewis (laura.lewis@aecom.com) Rebecca Mora (rebecca.mora@aecom.com)

Delivering a better world

REMISSION CONTAMINANTS

OCTOBER 15-17, 2024

Poster:

"Piloting Foam Fractionation on an RO Concentrate Stream as part of Ovivo's Integrated Solution for Onsite PFAS Destruction with Electro-oxidation"

Bringing water to life

OVIVO'S PFAS DESTRUCTION SOLUTIONS

BREAK FREE

Obreak

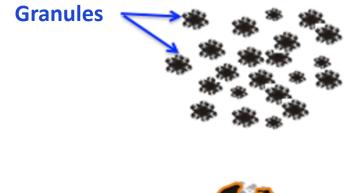
Bringing water to life"

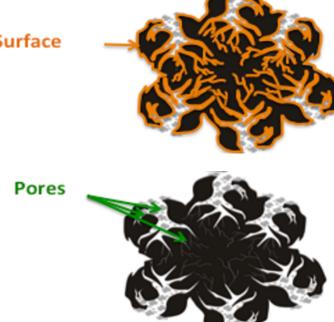
Tom Whitton Business Development Manager PFAS Solutions Product Group Ovivo

<u>Tom.Whitton@ovivowater.com</u> +1 (514) 601-1316

OCTOBER 15-17, 2024

Enhanced PFAS Removal with Advanced Granular Activated Carbons (GACs)


Micala Mitchek, Ariel Li, Joe Wong | Arq Inc


Objectives

- Evaluate the effectiveness of advanced engineered GACs for PFAS adsorption.
- Draw thermodynamic/adsorption behavioral tie lines and identify factors that disrupt tie lines between GAC adsorption performance in equilibrium isotherms and Rapid Small Scale Column Tests (RSSCT)s
- Identify key activated carbon properties contributing to leading adsorption mechanisms

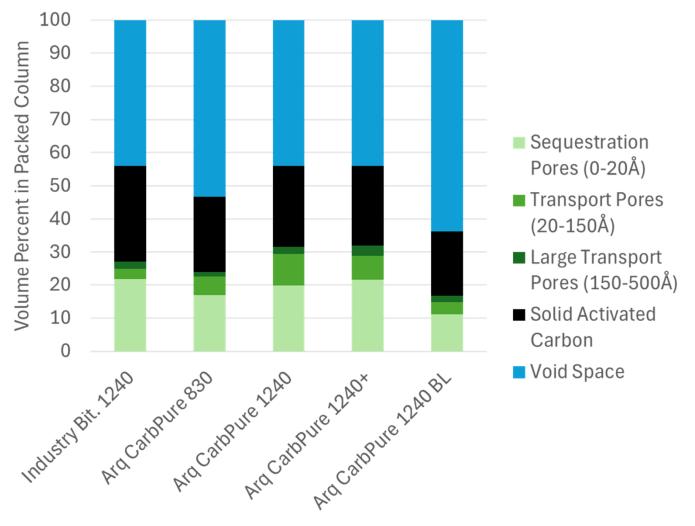
	Tes	st Methods		
Test	Water Matrix(s)	Other Test Conditions	PFAS	MCL or HI (ppt)
RSSCT	Spiked City of Golden Colorado tap water (0.9ppm	RSSCT designed using constant	PFBS	2000*
	TOC) spiked to equimolar concentrations of each PFAS at ~100ppt	diffusivity to simulate 10-minute Empty Bed Contact Time (EBCT)	PFHxS	10
Equilibrium	Spiked City of Golden Colorado tap water (0.9ppm	Equilibrium for each water used 7-day	PFOS	4
	TOC) spiked to equimolar concentrations of each	contact time	PFPeA	N/A
	PFAS at ~100ppt and at ~1000ppt		PFHxA	N/A
Kinetic	Spiked City of Golden Colorado tap water (0.9ppm TOC) spiked to equimolar concentrations of each	Adsorption measured at contact times ranging from 5 minutes to 7 days	PFOA	4
	PFAS at ~100ppt		PFNA	10

Tunning Reagglomerated Bituminous GAC Properties

Arq CarbPure RG 1240

Generation 1 - 12X40 GAC Produced from purified bituminous coal waste

Arq CarbPure RG 830


Generation 1 - 8X30 GAC Produced from purified bituminous coal waste

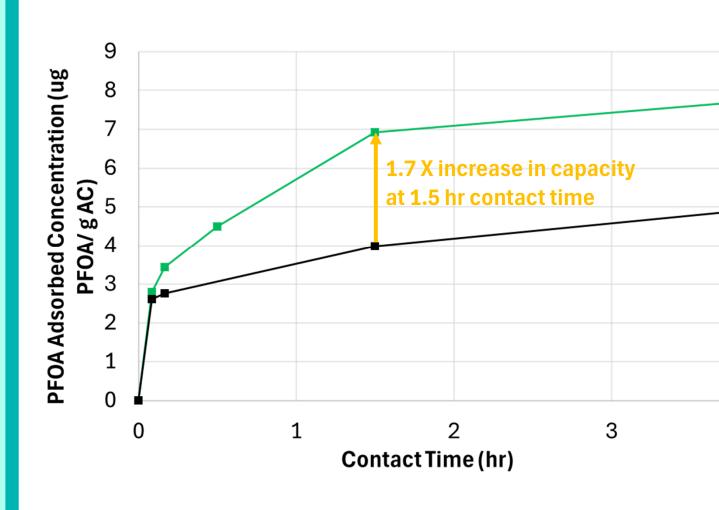
Arq CarbPure RG 1240 BL

Generation 2 - 12X40 GAC Produced from purified bituminous coal waste with enhanced surface character for targeting PFAS

Arq CarbPure RG 1240+

Generation 2 - 12X40 GAC Produced from purified bituminous coal waste with enhanced pore character for targeting PFAS

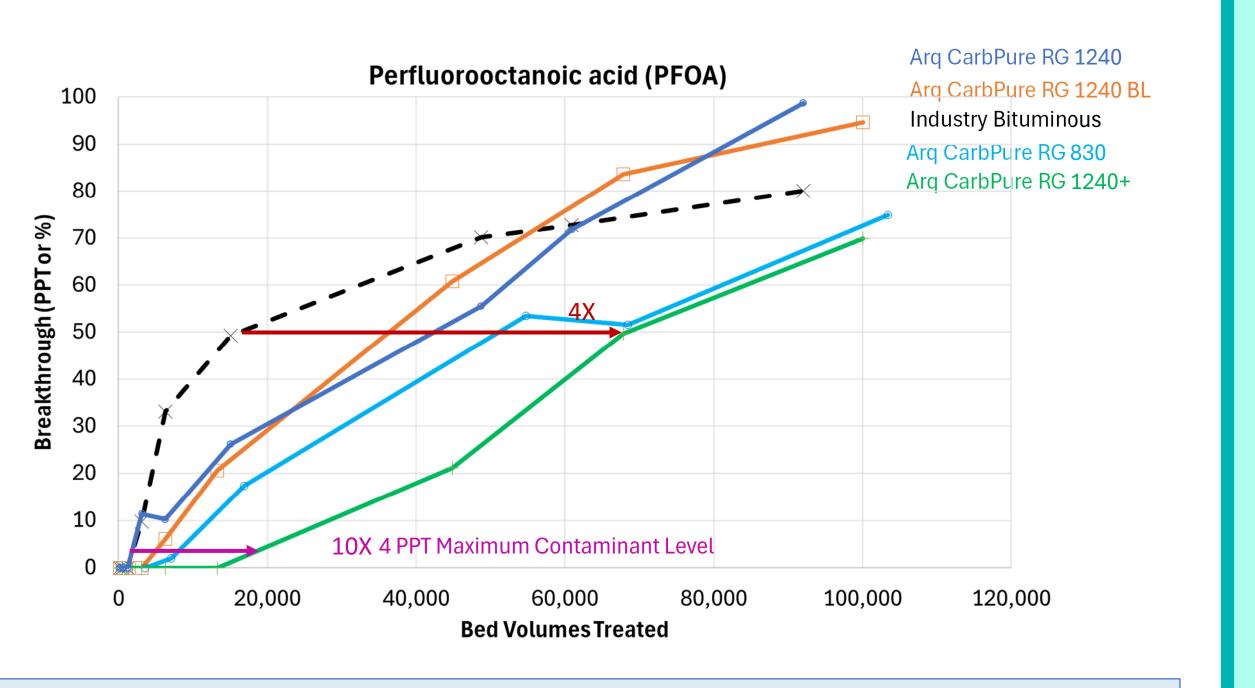
DESCRIPTION	Apparent Density (g/mL)	lodine Number (mg/g)	Total Pore Volume (0-500Å) (cc/g)	Sequestration Pore Volume (0-20Å) (cc/g) (vol%)	Transport Pore Volume (20-150Å) (cc/g) (vol%)	Slurry pH (high pH indicates net positive surface charge)	Ash (dry wt%)	TGA wt loss 400-750C (wt%) (low wt loss indicates low surface functional groups)
Industry Bit. 1240	0.59	837	0.46	0.37 (80%)	0.05 (11%)	10.3	5.7	0.64
Arq CarbPure 830	0.47	913	0.51	0.36 (67%)	0.12 (22%)	11.0	10.1	0.61
Arq CarbPure 1240	0.51	1034	0.62	0.39 (63%)	0.19 (31%)	10.8	12.7	0.46
Arq CarbPure 1240+	0.50	1098	0.64	0.43 (67%)	0.15 (23%)	10.7	12.5	0.65
Arq CarbPure 1240 BL	0.41	726	0.41	0.27 (66%)	0.09 (22%)	11.9	16.0	


Bahareh Tajdini, Chris Bellona | Colorado School of Mines

Maximum Contaminant Level (MCL *Health Index (HI) sum < 1 for of 4 PFAS

PFAS		PFBS	PFHxS	PFOS	PFPeA	PFHxA	PFOA	PFNA
Average Influent, ppt		96	98	96	104	108	106	102
% Breakthrough at MCL		N/A	10%	4%	N/A	N/A	4%	10 %
GAC	lodine		Bed Volum	es Treated	at Max Con	taminant L	.evel (MCL)	
	Number		(lm)	rovement	over Indust	ry Bitumin	ous)	
Industry Bituminous 1240	837	-	3,400	2,600	-	-	2,000	3,400
Arq CarbPure GAC 1240	995	-	7,600	6,200	-	-	2,000	7,800
			(2.2X)	(2.4X)			(1.0X)	(2.3X)
Arq CarbPure GAC 830	883	-	15,000	11,600	-	-	8,400	15,400
			(4.4X)	(4.5X)			(4.2X)	(4.5X)
Arq CarbPure GAC 1240+	1098	-	38,400	23,000	-	-	19,200	35,000
			(11X)	(8.9X)			(9.6X)	(10.3)
Arq CarbPure GAC 1240 BL	726	-	10,000	9,000	-	-	5,200	10,000
			(2.9X)	(3.5X)			(2.6X)	(2.9X)

	PFAS		PFBS	PFHxS	PFOS	PFPeA	PFHxA	PFOA	PFNA
	Average Influent, ppt		96	98	96	104	108	106	102
L	% Breakthrough at MCL		50 %						
	GAC	lodine		Bed \	/olumes Tre	eated at 50	% Breakthr	ough	
		Number		(Imp	rovement	over Indust	ry Bitumin	ous)	
l	Industry Bituminous 1240	837	25,000	38,000	58,000	5,000	16,000	17,000	32,000
	Arq CarbPure GAC 1240	995	49,000	60,000	62,000	8,000	25,000	42,000	52,000
L			(2.0X)	(1.6X)	(1.1X)	(1.6X)	(1.6X)	(2.5X)	(1.6X)
L	Arq CarbPure GAC 830	883	40,000	101,000	120,000	19,000	31,000	52,000	83,000
L			(1.6X)	(2.7X)	(2.1X)	(3.8X)	(1.9X)	(3.1X)	(2.6X)
L	Arq CarbPure GAC 1240+	1098	65,000	109,000	135,000	26,000	39,000	68,000	103,000
			(2.6X)	(2.9X)	(2.3X)	(5.2X)	(2.4X)	(4.0X)	(3.2X)
	Arq CarbPure GAC 1240 BL	726	30,000	50,000	67,000	10,000	25,000	37,000	49,000
			(1.2X)	(1.3X)	(1.2X)	(2.0X)	(1.5X)	(2.2X)	(1.5X)


Adsorption Kinetics

Enhancement in adsorption kinetics doesn't fully account for RSSCT performance enhancement Exploring how to utilize improved adsorption kinetics

Contact: micala.mitchek@arq.com

Enhanced PFAS Removal in Rapid Small Scale Column Test Results

Tuning particle, pore, and surface properties of reagglomerated bituminous GACs can increase the volume of water treated for PFOA by up to 10X at the 4 ppt MCL and up to 4X at 50% breakthrough

Equilibrium Adsorption Capacity

Test		Equilibrium	RSSCT	Equilibrium	RSSCT
Contact time		1 wk	Simulated 10 min EBCT	1 wk	Simulated 10 min EBC
Performance Evaluation Concentration	on, ppt	4	4	100	100
Adsorbed Capacity	Industry Bituminous	2.7	0.4	75	9.1
(ug PFOA/g)	CarbPure GAC 1240+	3.5	4.1	81	16.0
Performance Factor	Industry Bituminous	1.0	1.0	1.0	1.0
(wt CarbPure 1240+ /					
wt industry bituminous needed to	CarbPure GAC 1240+	0.8	0.1	0.9	0.6
achieve performance evaluation conc.)					
 Properties of CarbPure GAC 124 in isotherm testing (10-20%) but Opportunity to overcome ineffici 	0+ (enhanced transports of the second	rt pores and/or surf ce enhancements	in RSSCT (40-90%)		-
in isotherm testing (10-20%) but	0+ (enhanced transports of the second	rt pores and/or surf ce enhancements are preventing ach	ace characteristics) lead in RSSCT (40-90%) ieving equilibrium		-
in isotherm testing (10-20%) but	0+ (enhanced transports of the second	rt pores and/or surf ce enhancements	ace characteristics) lead in RSSCT (40-90%) ieving equilibrium		-
 in isotherm testing (10-20%) but Opportunity to overcome inefficition Surface, pore, and particle pro 	0+ (enhanced transport significant performant encies in RSSCTs that	rt pores and/or surf ce enhancements are preventing ach Key Find	ace characteristics) lead in RSSCT (40-90%) ieving equilibrium	I to moderate per	rformance enhanceme
 in isotherm testing (10-20%) but Opportunity to overcome inefficition 	0+ (enhanced transport significant performant encies in RSSCTs that	rt pores and/or surf ce enhancements are preventing ach Key Find	ace characteristics) lead in RSSCT (40-90%) ieving equilibrium	I to moderate per	rformance enhanceme
 in isotherm testing (10-20%) but Opportunity to overcome inefficient Surface, pore, and particle pro 	0+ (enhanced transport significant performant encies in RSSCTs that perties of reagglome	rt pores and/or surf ce enhancements are preventing ach Key Find erated bituminous	ace characteristics) lead in RSSCT (40-90%) ieving equilibrium ings GACs can be tuned to	I to moderate per enhance PFAS	rformance enhanceme
 in isotherm testing (10-20%) but Opportunity to overcome inefficient Surface, pore, and particle proadsorption rate. 	0+ (enhanced transport significant performance encies in RSSCTs that perties of reagglome ties indicate that col	rt pores and/or surf ce enhancements are preventing ach Key Find erated bituminous	ace characteristics) lead in RSSCT (40-90%) ieving equilibrium ings GACs can be tuned to	I to moderate per enhance PFAS	rformance enhanceme
 in isotherm testing (10-20%) but Opportunity to overcome inefficient Surface, pore, and particle provide adsorption rate. Equilibrium adsorption capacient 	0+ (enhanced transport significant performance encies in RSSCTs that perties of reagglome ties indicate that col ption performance.	rt pores and/or surf ce enhancements are preventing ach Key Find erated bituminous umn adsorption d	ace characteristics) lead in RSSCT (40-90%) ieving equilibrium GACs can be tuned to doesn't approach equil	to moderate per enhance PFAS ibrium entitlem	rformance enhanceme removal capacity an ent leaving significai

